Several determinants are suspected to be causal drivers for new cases of COVID-19 infection. Correcting for possible confounders, we estimated the effects of the most prominent determining factors on reported case numbers. To this end, we used a directed acyclic graph (DAG) as a graphical representation of the hypothesized causal effects of the determinants on new reported cases of COVID-19. Based on this, we computed valid adjustment sets of the possible confounding factors. We collected data for Germany from publicly available sources (e.g. Robert Koch Institute, Germany’s National Meteorological Service, Google) for 401 German districts over the period of 15 February to 8 July 2020, and estimated total causal effects based on our DAG analysis by negative binomial regression. Our analysis revealed favorable effects of increasing temperature, increased public mobility for essential shopping (grocery and pharmacy) or within residential areas, and awareness measured by COVID-19 burden, all of them reducing the outcome of newly reported COVID-19 cases. Conversely, we saw adverse effects leading to an increase in new COVID-19 cases for public mobility in retail and recreational areas or workplaces, awareness measured by searches for “corona” in Google, higher rainfall, and some socio-demographic factors. Non-pharmaceutical interventions were found to be effective in reducing case numbers. This comprehensive causal graph analysis of a variety of determinants affecting COVID-19 progression gives strong evidence for the driving forces of mobility, public awareness, and temperature, whose implications need to be taken into account for future decisions regarding pandemic management.
Mobility, awareness, and weather are suspected to be causal drivers for new cases of COVID-19 infection. Correcting for possible confounders, we estimated their causal effects on reported case numbers. To this end, we used a directed acyclic graph (DAG) as a graphical representation of the hypothesized causal effects of the aforementioned determinants on new reported cases of COVID-19. Based on this, we computed valid adjustment sets of the possible confounding factors. We collected data for Germany from publicly available sources (e.g. Robert Koch Institute, Germany's National Meteorological Service, Google) for 401 German districts over the period of 15 February to 8 July 2020, and estimated total causal effects based on our DAG analysis by negative binomial regression. Our analysis revealed favorable causal effects of increasing temperature, increased public mobility for essential shopping (grocery and pharmacy), and awareness measured by COVID-19 burden, all of them reducing the outcome of newly reported COVID-19 cases. Conversely, we saw adverse effects of public mobility in retail and recreational areas, awareness measured by searches for "corona" in Google, and higher rainfall, leading to an increase in new COVID-19 cases. This comprehensive causal analysis of a variety of determinants affecting COVID-19 progression gives strong evidence for the driving forces of mobility, public awareness, and temperature, whose implications need to be taken into account for future decisions regarding pandemic management.
Aim of the study The aim of the study was to investigate satisfaction, saving of time and the possible reduction of patient visits to practices that use Remote Patient Monitoring (RPM) during treatment compared to usual care. Methods In a case-control study between October 2020 and May 2021, the participating practices were randomized into three groups (two different RPM systems, one control). The doctors were required to enroll patients with acute respiratory infection ≥ 18 years who have a web-enabled device. After a three-month study phase, the doctors were asked to describe the treatment of their patients via online survey. The patients were also questioned. The analysis was carried out descriptively and with group comparisons. Results 51 practices with 121 patients were included. Overall, the results show a positive assessment of digital care on the patient side. As for the doctors, handling and integration of the systems into consisting practice processes seem to be a challenge. Further, the number of patient visits to the practice was not reduced by using the systems and the doctors did not save time, but the relationship to the patients was intensified. Conclusion Even if there were no indications for more efficiency by using the RPM systems, the doctors see great potential to intensify the interaction between doctor and patient. In particular, more intensive contact with patients with chronic diseases (e. g. COPD, long-COVID) could be of long term interest and importance for doctors in outpatient care. Trial Registration: DRKS00023553 Keywords: RPM, outpatient care, chains of infection, respiratory infection
Background In health care, diagnosis codes in claims data and electronic health records (EHRs) play an important role in data-driven decision making. Any analysis that uses a patient’s diagnosis codes to predict future outcomes or describe morbidity requires a numerical representation of this diagnosis profile made up of string-based diagnosis codes. These numerical representations are especially important for machine learning models. Most commonly, binary-encoded representations have been used, usually for a subset of diagnoses. In real-world health care applications, several issues arise: patient profiles show high variability even when the underlying diseases are the same, they may have gaps and not contain all available information, and a large number of appropriate diagnoses must be considered. Objective We herein present Pat2Vec, a self-supervised machine learning framework inspired by neural network–based natural language processing that embeds complete diagnosis profiles into a small real-valued numerical vector. Methods Based on German outpatient claims data with diagnosis codes according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10), we discovered an optimal vectorization embedding model for patient diagnosis profiles with Bayesian optimization for the hyperparameters. The calibration process ensured a robust embedding model for health care–relevant tasks by aggregating the metrics of different regression and classification tasks using different machine learning algorithms (linear and logistic regression as well as gradient-boosted trees). The models were tested against a baseline model that binary encodes the most common diagnoses. The study used diagnosis profiles and supplementary data from more than 10 million patients from 2016 to 2019 and was based on the largest German ambulatory claims data set. To describe subpopulations in health care, we identified clusters (via density-based clustering) and visualized patient vectors in 2D (via dimensionality reduction with uniform manifold approximation). Furthermore, we applied our vectorization model to predict prospective drug prescription costs based on patients’ diagnoses. Results Our final models outperform the baseline model (binary encoding) with equal dimensions. They are more robust to missing data and show large performance gains, particularly in lower dimensions, demonstrating the embedding model’s compression of nonlinear information. In the future, other sources of health care data can be integrated into the current diagnosis-based framework. Other researchers can apply our publicly shared embedding model to their own diagnosis data. Conclusions We envision a wide range of applications for Pat2Vec that will improve health care quality, including personalized prevention and signal detection in patient surveillance as well as health care resource planning based on subcohorts identified by our data-driven machine learning framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.