This article is a survey of our recent work on the connections between Koba–Nielsen amplitudes and local zeta functions (in the sense of Gel’fand, Weil, Igusa, Sato, Bernstein, Denef, Loeser, etc.). Our research program is motivated by the fact that the p-adic strings seem to be related in some interesting ways with ordinary strings. p-Adic string amplitudes share desired characteristics with their Archimedean counterparts, such as crossing symmetry and invariance under Möbius transformations. A direct connection between p-adic amplitudes and the Archimedean ones is through the limit p→1. Gerasimov and Shatashvili studied the limit p→1 of the p-adic effective action introduced by Brekke, Freund, Olson and Witten. They showed that this limit gives rise to a boundary string field theory, which was previously proposed by Witten in the context of background independent string theory. Explicit computations in the cases of 4 and 5 points show that the Feynman amplitudes at the tree level of the Gerasimov–Shatashvili Lagrangian are related to the limit p→1 of the p-adic Koba–Nielsen amplitudes. At a mathematical level, this phenomenon is deeply connected with the topological zeta functions introduced by Denef and Loeser. A Koba–Nielsen amplitude is just a new type of local zeta function, which can be studied using embedded resolution of singularities. In this way, one shows the existence of a meromorphic continuations for the Koba–Nielsen amplitudes as functions of the kinematic parameters. The Koba–Nielsen local zeta functions are algebraic-geometric integrals that can be defined over arbitrary local fields (for instance R, C, Qp, Fp((T))), and it is completely natural to expect connections between these objects. The limit p tends to one of the Koba–Nielsen amplitudes give rise to new amplitudes which we have called Denef–Loeser amplitudes. Throughout the article, we have emphasized the explicit calculations in the cases of 4 and 5 points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.