Time-series classification (TSC) problems present a specific challenge for classification algorithms: how to measure similarity between series. A \emph{shapelet} is a time-series subsequence that allows for TSC based on local, phase-independent similarity in shape. Shapelet-based classification uses the similarity between a shapelet and a series as a discriminatory feature. One benefit of the shapelet approach is that shapelets are comprehensible, and can offer insight into the problem domain. The original shapelet-based classifier embeds the shapelet-discovery algorithm in a decision tree, and uses information gain to assess the quality of candidates, finding a new shapelet at each node of the tree through an enumerative search. Subsequent research has focused mainly on techniques to speed up the search. We examine how best to use the shapelet primitive to construct classifiers. We propose a single-scan shapelet algorithm that finds the best $k$ shapelets, which are used to produce a transformed dataset, where each of the $k$ features represent the distance between a time series and a shapelet. The primary advantages over the embedded approach are that the transformed data can be used in conjunction with any classifier, and that there is no recursive search for shapelets. We demonstrate that the transformed data, in conjunction with more complex classifiers, gives greater accuracy than the embedded shapelet tree. We also evaluate three similarity measures that produce equivalent results to information gain in less time. Finally, we show that by conducting post-transform clustering of shapelets, we can enhance the interpretability of the transformed data. We conduct our experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselve
The current rise in hacking and computer network attacks throughout the world has heightened the demand for improved intrusion detection and prevention solutions. The intrusion detection system (IDS) is critical in identifying abnormalities and assaults on the network, which have grown in size and pervasiveness. The paper proposes a novel approach for network intrusion detection using multistage deep learning image recognition. The network features are transformed into four-channel (Red, Green, Blue, and Alpha) images. The images then are used for classification to train and test the pre-trained deep learning model ResNet50. The proposed approach is evaluated using two publicly available benchmark datasets, UNSW-NB15 and BOUN Ddos. On the UNSW-NB15 dataset, the proposed approach achieves 99.8% accuracy in the detection of the generic attack. On the BOUN DDos dataset, the suggested approach achieves 99.7% accuracy in the detection of the DDos attack and 99.7% accuracy in the detection of the normal traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.