Objective: The Ross procedure is an excellent option for children or young adults who need aortic valve replacement because it can restore survival to that of the normal aged-matched population. However, autograft remodeling can lead to aneurysmal formation and reoperation, and the biomechanics of this process is unknown. This study investigated postoperative autograft remodeling after the Ross procedure by examining patient-specific autograft wall stresses.Methods: Patients who have undergone the Ross procedure who had intraoperative pulmonary root and aortic specimens collected were recruited. Patient-specific models (n ¼ 16) were developed using patient-specific material property and their corresponding geometry from cine magnetic resonance imaging at 1-year followup. Autograft AE Dacron for aneurysm repair and ascending aortic geometries were reconstructed to develop patient-specific finite element models, which incorporated material properties and wall thickness experimentally measured from biaxial stretching. A multiplicative approach was used to account for prestress geometry from in vivo magnetic resonance imaging. Pressure loading to systemic pressure (120/80) was performed using LS-DYNA software (LSTC Inc, Livermore, Calif).Results: At systole, first principal stresses were 809 kPa (25%-75% interquartile range, 691-1219 kPa), 567 kPa (485-675 kPa), 637 kPa (555-755 kPa), and 382 kPa (334-413 kPa) at the autograft sinotubular junction, sinuses, annulus, and ascending aorta, respectively. Second principal stresses were 360 kPa (310-426 kPa), 355 kPa (320-394 kPa), 272 kPa (252-319 kPa), and 184 kPa (147-222 kPa) at the autograft sinotubular junction, sinuses, annulus, and ascending aorta, respectively. Mean autograft diameters were 29.9 AE 2.7 mm, 38.3 AE 5.3 mm, and 26.6 AE 4.0 mm at the sinotubular junction, sinuses, and annulus, respectively.Conclusions: Peak first principal stresses were mainly located at the sinotubular junction, particularly when Dacron reinforcement was used. Patient-specific simulations lay the foundation for predicting autograft dilatation in the future after understanding biomechanical behavior during long-term follow-up. (J Thorac Cardiovasc Surg 2021;-:1-12) First principal stresses of representative patientspecific autograft, ascending aorta, and Dacron graft.
Introduction: The Ross procedure is an excellent option for children and young adults who need aortic valve replacement as this surgery can restore patient survival to that of a normal sex and aged-matched population. However, some patients experience aneurysmal formation during autograft remodeling and require reoperation. As the underlying biomechanics of autograft remodeling are unknown, we investigated patient-specific wall stresses in pulmonary autografts one year post-operatively to better understand systemic pressure-driven early autograft wall stresses. Methods: Ross patients (n=16) who underwent intraoperative collection of pulmonary root/aortic specimen, and subsequent one-year MRI follow-up were recruited. Patient-specific material properties from their tissue were experimentally determined and incorporated into autograft ± Dacron and ascending aorta finite element models. A multiplicative approach was used to account for pre-stress geometry from in-vivo MRI. Physiologic pressure loading was simulated with LS-DYNA software. Results: At systemic systole, first principal stresses were 567kPa (25-75% IQR, 485-675kPa), 809kPa (691-1219kPa), and 382kPa (334-413kPa) at autograft sinuses, sinotubular junction (STJ), and ascending aorta, respectively. Second principal stresses were 355kPa (320-394kPa), 360kPa (310-426kPa), and 184kPa (147-222kPa) at autograft sinuses, STJ, and ascending aorta, respectively. Mean autograft diameters were 38.3±5.3mm, 29.9±2.7mm, and 26.6±4.0mm at sinuses, STJ, and annulus, respectively. Conclusions: First principal stresses were mainly located at STJ, particularly when Dacron reinforcement was applied to constrain STJ dilatation. However, at one-year after the Ross operation, autograft dilatation was not seen despite elevated autograft wall stresses compared to their internal controls, the lower wall stresses in corresponding native distal ascending aorta. In this group of patients, higher risk of dilatation is expected in the sinuses and STJ if not constrained by Dacron than the corresponding ascending aorta. Future follow-up will elucidate the biomechanics of long-term autograft remodeling to develop predictive models for autograft dilatation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.