The terminal differentiation of myelinating glia involves complex interactions that culminate in the formation of myelin. The POU domain transcription factor Tst-l/Oct-6/SCIP is expressed transiently during myelination, and we report here that it has a critical role in this developmental process. Deletion of the Tst-l/Oct-6/SCIP gene produces a severe defect in peripheral myelination by arresting Schwann cell maturation before axonal wrapping. Unexpectedly, the activation of major myelin-specific genes appears to be unaffected by the Tst-l/Oct-6/SCIP mutation, demonstrating that multiple, independently regulated events are required for terminal differentiation of Schwann cells. In addition, aberrant differentiation and migration of specific neurons in Tst-l/Oct-6/SCIP mutant homozygotes is associated with a fatal breathing defect, providing a model for investigating the regulation of pulmonary homeostasis.
Schwann cells and oligodendrocytes make the myelin sheaths of the PNS and CNS, respectively. Their myelin sheaths are structurally similar, consisting of multiple layers of specialized cell membrane that spiral around axons, but there are several differences. (1) CNS myelin has a "radial component" composed of a tight junction protein, claudin-11/oligodendrocyte-specific protein. (2) Schwann cells have a basal lamina and microvilli. (3) Although both CNS and PNS myelin sheaths have incisures, those in the CNS lack the structural as well as the molecular components of "reflexive" adherens junctions and gap junctions. In spite of their structural differences, the axonal membranes of the PNS and CNS are similarly organized. The nodal axolemma contains high concentrations of voltage-dependent sodium channels that are linked to the axonal cytoskeleton by ankyrin(G). The paranodal membrane contains Caspr/paranodin, which may participate in the formation of axoglial junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated beta2 subunit, as well as Caspr2, which is closely related to Caspr. The myelin sheath probably organizes these axonal membrane-related proteins via trans interactions.
In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSC exos ). In this study, we assessed the possible mechanism of MSC exos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSC exos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSC exos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSC exos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.