Several detailed studies have been done on the characterization of organoclays and the type of structures developed when they interact with alkylammonium molecules. Few published contributions exist, however, on the distribution of surfactant within the organoclays and the mechanism by which they are intercalated. Also, although X-ray photoelectron spectroscopy (XPS) is a suitable technique for the study of the surface characteristics of organoclays, very few such XPS studies have been carried out. With the aim of contributing to a better understanding of the intercalation process, a series of organoclays was synthesized using a montmorillonite and the cationic surfactant hexadecyltrimethylammonium bromide (HDTMABr), with an increasing surfactant load of between 0.2 and 4.0 times the cation exchange capacity of the starting clay. By means of XPS, zeta potential, and thermal analysis techniques, distinguishing the strongly interacting fraction from the weakly interacting fraction of the adsorbed surfactant molecules was possible. Adsorption isotherms of each of these processes were constructed and then adjusted using the Langmuir and Dubinin-Radusquevich adsorption models. Three types of interaction between the surfactant and the clay were identified and described qualitatively and quantitatively. Two of these interactions, strong and weak, involved the hexadecyltrimethylammonium cation (HDTMA+). The third was a weak interaction involving the ion pair HDTMA+Br−. The results of this study may be useful for the comprehensive design of organoclays with specific physicochemical properties according to the application for which they are destined.
A range of nuclear magnetic resonance (NMR) techniques are employed to provide novel, non-invasive measurements of both the structure and transport properties of porous media following a biologically mediated calcite precipitation reaction. Both a model glass bead pack and a sandstone rock core were considered. Structure was probed using magnetic resonance imaging (MRI) via a combination of quantitative one-dimensional profiles and three-dimensional images, applied before and after the formation of calcite in order to characterise the spatial distribution of the precipitate. It was shown through modification and variations of the calcite precipitation treatment that differences in the calcite fill would occur but all methods were successful in partially blocking the different porous media. Precipitation was seen to occur predominantly at the inlet of the bead pack, whereas precipitation occurred almost uniformly along the sandstone core. Transport properties are quantified using pulse field gradient (PFG) NMR measurements which provide probability distributions of molecular displacement over a set observation time (propagators), supplementing conventional permeability measurements. Propagators quantify the local effect of calcite formation on system hydrodynamics and the extent of stagnant region formation. Collectively, the combination of NMR measurements utilised here provides a toolkit for determining the efficacy of a biological-precipitation reaction for partially blocking porous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.