Solar energy for water pumping is a possible alternative to conventional electricity and diesel-based pumping systems, particularly given the current electricity shortage and the high cost of diesel. The literature survey includes a comparison between previous studies of pumping systems using photovoltaic cells, and the extent of the influence of external factors such as radiation intensity and temperature on the efficiency of the system. Additionally, the use of water storage to generate electrical energy through potential energy by means of hydraulic generators and the effect of the amount of flow and height on the amount of energy generated, as well as the types of hydraulic generators are discussed in this paper. Nowadays, solar power is a major contributor to the world's electrical energy supply, either by generating electrical energy directly from solar cells or through water storage, which will be covered in this review. When compared to electricity or diesel-powered systems, solar water pumping is more cost-effective for irrigation and water supply in rural, urban, and remote areas. This paper also highlights the challenges that must be overcome to develop high-quality, long-lasting solar power technology for future use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.