Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha−1 per year (95% CI 0.14–0.72, mean period 1988–2010) in above-ground live biomass carbon. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.
A nutrient addition experiment was set up in August 1993 in a species-rich primary lowland dipterocarp forest in Barito Ulu, Central Kalimantan, Indonesia. The following treatments were applied: control, +N, +P and +NP. There were ¢ve blocks of four 50 m  50 m plots with a separate treatment for each plot. Fine litterfall was measured on all the plots from l May 1994 for 12 months. Litterfall mass and phosphorus concentrations were signi¢cantly higher in all the fertilizer treatments compared with the controls. All trees (510 cm dbh) were measured in August 1993 and in August 1998, and there was no signi¢cant girth increment response to fertilization in dipterocarps or non-dipterocarps. Dipterocarps of the red meranti group showed a doubling of girth increment in the +NP treatment, however, the di¡er-ence from the control fell short of signi¢cance.
Small-scale spatial association of the distribution for 55 abundant tree species with two environmental factors (humus depth and surface microtopography) was examined in two 1-ha plots of a heath (kerangas) forest in Central Kalimantan, Indonesia. More than 80% of the 55 species showed a significant habitat preference in humus depth and/or relative elevation in at least one plot. In particular, ten species occurring in both plots showed a consistent significant preference for humus depth or relative elevation in the two plots. Using randomization tests, however, only five species significantly associated with humus depth and no species with relative elevation. These results suggest that edaphic and topographic factors, especially humus depth, contribute to determining local spatial distribution and floristic composition of abundant tree species in the forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.