Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
True and Error Theory (TET) provides a method to separate the variability of behavior into components due to changing true policy and to random error. TET is a testable theory that can serve as a statistical model, allowing one to evaluate substantive theories as nested, special cases. TET is more accurate descriptively and has theoretical advantages over previous approaches. This paper presents a freely available computer program in R that can be used to fit and evaluate both TET and substantive theories that are special cases of it. The program performs Monte Carlo simulations to generate distributions of test statistics and bootstrapping to provide confidence intervals on parameter estimates. Use of the program is illustrated by a reanalysis of previously published data testing whether what appeared to be violations of Expected Utility (EU) theory (Allais paradoxes) by previous methods might actually be consistent with EU theory.
Transitivity is the assumption that if a person prefers A to B and B to C, then that person should prefer A to C. This article explores a paradigm in which Birnbaum, Patton and Lott (1999) thought people might be systematically intransitive. Many undergraduates choose C = ($96, .85; $90, .05; $12, .10) over A = ($96, .9; $14, .05; $12, .05), violating dominance. Perhaps people would detect dominance in simpler choices, such as A versus B = ($96, .9; $12, .10) and B versus C, and yet continue to violate it in the choice between A and C, which would violate transitivity. In this study we apply a true and error model to test intransitive preferences predicted by a partially effective editing mechanism. The results replicated previous findings quite well; however, the true and error model indicated that very few, if any, participants exhibited true intransitive preferences. In addition, violations of stochastic dominance showed a strong and systematic decrease in prevalence over time and violated response independence, thus violating key assumptions of standard random preference models for analysis of transitivity.
Using transaction data from a sample of 1.8 million credit card accounts, we provide the first field test of a major prediction of Prelec and Loewenstein’s theory of mental accounting: that consumers will pay off expenditure on transient forms of consumption more quickly than expenditure on durables. According to the theory, this is because the pain of paying can be offset by the future anticipated pleasure of consumption only when money is spent on consumption that endures over time. Consistent with this prediction, we found that repayment of debt incurred for nondurable goods is an absolute 10% more likely than repayment of debt incurred for durable goods. The strength of this relationship is comparable to an increment in 15 percentage points in the credit card annualized percentage rate. Our results have not only managerial implications for the structuring of financial transactions (e.g., that credit card customers should be given the option of paying off specific purchases) but also more general implications for exploiting variations in the pain of paying in incentive schemes aimed at customers and employees. This paper was accepted by Yan Chen, behavioral economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.