This work reports experimental and numerical study of primary jet breakup of a pressure swirl atomizer. Experiments were performed in a constant volume spray chamber and the spray pattern was characterized as a function of different liquid/gas density ratios which was achieved by changing the ambient pressure. The liquid/gas density ratio was varied between ≈ 102 to 103 and the axial Reynold number was maintained at 6 × 103. Diffused backlight imaging in conjunction with high speed videography was used to visualize the spray. Parameters like spray cone angle, spray breakup length and flapping frequency was estimated. Additionally, POD analysis was performed to find the sheet instability modes. A corresponding numerical study using Coupled Level Set VOF method was performed keeping the liquid/gas density ratio of 10 and 102 to simulate the primary jet breakup using an in-house two-phase solver developed using OpenFOAM libraries. The solver was validated by following the numerical work of Fuster et al. Effect of computational mesh size on parameters like spray cone angle, breakup length was estimated.
The present study numerically investigates the effect of shield on the flow characteristics of Hartmann whistle. The flow characteristics of un-shielded Hartmann whistle are compared with whistles of different shield heights 15 mm, 17 mm, 20 mm, 25 mm and 30 mm. The comparison of Mach number contours and transient velocity vectors of shielded Hartmann whistles with un-shielded ones for the same conditions reveal that the presence of shield causes the exiting jet to stick to the wall of the shield without causing spill-over around the cavity inlet, thus sustaining the shock oscillation as seen in the unshielded Hartmann whistle, which has intense flow/shock oscillation and spill-over around the cavity mouth. The velocity vectors indicate jet regurgitance in shielded whistles showing inflow and outflow phases like un-shielded ones with different regurgitant phases. The sinusoidal variation of mass flow rate at the cavity inlet in un-shielded Hartmann whistle indicates jet regurgitance as the primary operating mode with large flow diversion around the cavity mouth whereas the non-sinusoidal behavior in shielded ones represent that the jet regurgitance is not the dominant operating mode. Thus, this paper sufficiently demonstrates the effect of shield in modifying the flow/shock oscillations in the vicinity of the cavity mouth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.