Mitosis-specific agents have, to date, not been clinically successful. By contrast, microtubule-targeting agents (MTAs) have a long record of success, usually attributed to the induction of mitotic arrest. Indeed, it was this success that led to the search for mitosis-specific inhibitors. We believe the clinical disappointment of mitosis-specific inhibitors stands as evidence that MTAs have been successful not only by interfering with mitosis but, more importantly, by disrupting essential interphase cellular mechanisms. In this Perspective we will review literature that supports a paradigm shift in how we think about one of our most widely used classes of chemotherapeutics-MTAs. We believe that the steady presence and constant physiological role of microtubules are responsible for the overall success of MTAs. While mitosis-specific inhibitors are effective on only a small fraction of the tumor mass (dividing cells), MTAs target tubulin, a protein that has crucial roles in both mitotic and non-mitotic cells.
Although they have been advocated with an understandable enthusiasm, mitosis-specific agents such as inhibitors of mitotic kinases and kinesin spindle protein have not been successful clinically. These drugs were developed as agents that would build on the success of microtubule-targeting agents while avoiding the neurotoxicity that encumbers drugs such as taxanes and vinca alkaloids. The rationale for using mitosisspecific agents was based on the thesis that the clinical efficacy of microtubule-targeting agents could be ascribed to the induction of mitotic arrest. However, the latter concept, which has long been accepted as dogma, is likely important only in cell culture and rapidly growing preclinical models, and irrelevant in patient tumors, where interference with intracellular trafficking on microtubules is likely the principal mechanism of action. Here we review the preclinical and clinical data for a diverse group of inhibitors that target mitosis and identify the reasons why these highly specific, myelosuppressive compounds have failed to deliver on their promise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.