Abstract-Unveiling network and service performance issues in complex and highly decentralized systems such as the Internet is a major challenge. Indeed, the Internet is based on decentralization and diversity. However, its distributed nature leads to operational brittleness and difficulty in identifying the root causes of performance degradation. In such a context, network measurements are a fundamental pillar to shed light and to unveil design and implementation defects. To tackle this fragmentation and visibility problem, we have recently conceived mPlane, a distributed measurement platform which runs, collects and analyses traffic measurements to study the operation and functioning of the Internet. In this paper, we show the potentiality of the mPlane approach to unveil network and service degradation issues in live, operational networks, involving both fixed-line and cellular networks. In particular, we combine active and passive measurements to troubleshoot problems in end-customer Internet access connections, or to automatically detect and diagnose anomalies in Internet-scale services (e.g., YouTube) which impact a large number of end-users.
Abstract-Network measurements are a fundamental pillar to understand network performance and perform root cause analysis in case of problems. Traditionally, either active or passive measurements are considered. While active measurements allow to know exactly the workload injected by the application into the network, the passive measurements can offer a more detailed view of transport and network layer impacts. In this paper, we present a hybrid approach in which active throughput measurements are regularly run while a passive measurement tool monitors the generated packets. This allows us to correlate the application layer measurements obtained by the active tool with the more detailed view offered by the passive monitor.The proposed methodology has been implemented following the mPlane reference architecture, tools have been installed in the Fastweb network, and we collect measurements for more than three months. We report then a subset of results that show the benefits obtained when correlating active and passive measurements. Among results, we pinpoint cases of congestion, of ADSL misconfiguration, and of modem issues that impair throughput obtained by the users.
The authors report an experimental investigation on the measurement of the available bandwidth for the users in gigabit passive optical networks (GPON) and the limitations caused by the Internet protocols, and transfer control protocol (TCP) in particular. We point out that the huge capacity offered by the GPON highlights the enormous differences that can be showed among the available and actually exploitable bandwidth. In fact, while the physical layer capacity can reach value of 100 Mb/s and more, the bandwidth at disposal of the user (i.e. either throughput at transport layer or goodput at application layer) can be much lower when applications and services based on TCP protocol are considered. In the context of service level agreements (SLA) verification, we show how to simultaneously measure throughput and line capacity by offering a method to verify multilayer SLA. We also show how it is possible to better exploit the physical layer capacity by adopting multiple TCP connections avoiding the bottleneck of a single connection.
Two energy saving approaches, called Fixed Upper Fixed Lower (FUFL) and Dynamic Upper Fixed Lower (DUFL), switching off idle optical Gigabit Ethernet (GbE) interfaces during low traffic periods, have been implemented on a testbed. We show on a simple network scenario that energy can be saved using off-the-shelf equipment not explicitly designed for dynamic on/off operation. No packet loss is experienced in our experiments. We indicate the need for faster access to routers in order to perform the reconfiguration. This is particularly important for the more sophisticated energy saving approaches such as DUFL, since FUFL can be implemented locally.
This work experimentally demonstrates how to control and manage user Quality of Service (QoS) by acting on the switching on-off of the optical Gigabit Ethernet (GbE) interfaces in a wide area network test bed including routers and GPON accesses. The QoS is monitored at the user location by means of active probes developed in the framework of the FP7 MPLANE project. The network topology is managed according to some current Software Defined Network issues and in particular an Orchestrator checks the user quality, the traffic load in the GbE links and manages the network interface reconfiguration when congestion occurs in some network segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.