Parvulins belong to the family of peptidyl-prolyl cis/trans isomerases (PPIases) assisting in protein folding and in regulating the function of a broad variety of proteins in all branches of life. The human representatives Pin1 and Par14/17 are directly involved in processes influencing cellular maintenance and cell fate decisions such as cell-cycle progression, metabolic pathways and ribosome biogenesis. This review on human parvulins summarizes the current knowledge of these enzymes and intends to oppose the well-studied Pin1 to its less wellexamined homolog human Par14/17 with respect to structure, catalytic and cellular function.
The peptidyl-prolyl cis/trans isomerases (PPIases) Parvulin 14 (Par14) and Parvulin 17 (Par17) result from alternative transcription initiation of the PIN4 gene. Whereas Par14 is present in all metazoan, Par17 is only expressed in Hominidae. Par14 resides mainly within the cellular nucleus, while Par17 is translocated into mitochondria. Using photo-affinity labeling, cross-linking and mass spectrometry (MS) we identified binding partners for both enzymes from HeLa lysates and disentangled their cellular roles. Par14 is involved in biogenesis of ribonucleoprotein (RNP)-complexes, RNA processing and DNA repair. Its elongated isoform Par17 participates in protein transport/translocation and in cytoskeleton organization. Nuclear magnetic resonance (NMR) spectroscopy reveals that Par17 binds to β-actin with its N-terminal region, while both parvulins initiate actin polymerization depending on their PPIase activity as monitored by fluorescence spectroscopy. The knockdown (KD) of Par17 in HCT116 cells results in a defect in cell motility and migration.
Trypanosoma brucei is a unicellular eukaryotic parasite, which causes the African sleeping sickness in humans. The recently discovered trypanosomal protein Parvulin 42 (TbPar42) plays a key role in parasite cell proliferation. Homologues of this two-domain protein are exclusively found in protozoa species. TbPar42 exhibits an N-terminal forkhead associated (FHA)-domain and a peptidyl-prolyl-cis/trans-isomerase (PPIase) domain, both connected by a linker. Using NMR and X-ray analysis as well as activity assays, we report on the structures of the single domains of TbPar42, discuss their intra-molecular interplay, and give some initial hints as to potential cellular functions of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.