The analysis of plantar pressure through podometry has allowed analyzing and detecting different types of disorders and treatments in child patients. Early detection of an inadequate distribution of the patient’s weight can prevent serious injuries to the knees and lower spine. In this paper, an embedded system capable of detecting the presence of normal, flat, or arched footprints using resistive pressure sensors was proposed. For this purpose, both hardware- and software-related criteria were studied for an improved data acquisition through signal coupling and filtering processes. Subsequently, learning algorithms allowed us to estimate the type of footprint biomechanics in preschool and school children volunteers. As a result, the proposed algorithm achieved an overall classification accuracy of 97.2%. A flat feet share of 60% was encountered in a sample of 1000 preschool children. Similarly, flat feet were observed in 52% of a sample of 600 school children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.