Abstract. In this study, the susceptibility to landslides at Sevilla township, Valle del Cauca, located at southwest of Colombia was evaluated. The conditioning factors that involve the generation of landslides were evaluated using Geographic Information Systems (GIS) and Remote Sensing (RS) techniques. For the estimating susceptibility, an Artificial Neural Network (ANN) was implemented by applying the “Backpropagation” method to extract the synoptic weights of the conditioning variables (slopes, flow length, curvature, geology, fracture density, and land cover) on an automatic way with a data training module. The data for the analysis of the conditioning factors were carried out through a Digital Elevation Model (DEM) obtained through Radar Interferometry techniques, with Sentinel-1B satellite images for the year 2018. The results showed that Sevilla’s township has areas with high susceptibility, high slopes, and that it’s crossed by an active geological fault which implies that the earth's dynamics will condition the terrain stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.