Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
Genomes are organized into high-level 3-dimensional structures, and DNA elements separated by long genomic distances could functionally interact. Many transcription factors bind to regulatory DNA elements distant from gene promoters. While distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Therefore, we developed Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) for de novo detection of global chromatin interactions, and comprehensively mapped the chromatin interaction network bound by oestrogen receptor α (ERα) in the human genome. We found that most high-confidence remote ERα binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ERα functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.
Summary Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced ChIA-PET strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CTCF and RNAPII with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes towards CTCF-foci for coordinated transcription. Furthermore, we show that haplotype-variants and allelic-interactions have differential effects on chromosome configuration influencing gene expression and may provide mechanistic insights into functions associated with disease susceptibility. 3D-genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D-genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.
Perturbations of the p53 pathway are associated with more aggressive and therapeutically refractory tumors. However, molecular assessment of p53 status, by using sequence analysis and immunohistochemistry, are incomplete assessors of p53 functional effects. We posited that the transcriptional fingerprint is a more definitive downstream indicator of p53 function. Herein, we analyzed transcript profiles of 251 p53-sequenced primary breast tumors and identified a clinically embedded 32-gene expression signature that distinguishes p53-mutant and wild-type tumors of different histologies and outperforms sequence-based assessments of p53 in predicting prognosis and therapeutic response. Moreover, the p53 signature identified a subset of aggressive tumors absent of sequence mutations in p53 yet exhibiting expression characteristics consistent with p53 deficiency because of attenuated p53 transcript levels. Our results show the primary importance of p53 functional status in predicting clinical breast cancer behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.