The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis
RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX‐labelled DNA damage foci in an ATM‐ and ATR‐dependent manner. These γH2AX‐labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co‐localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta. Genetic interaction between the RBR‐silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.
Highlights Putrescine pre-treatment increased cadmium toxicity in rice. In contrast, putrescine synthesis inhibition alleviated cadmium stress. The synthesis of higher polyamines and phytochelatins is antagonistically related. Putrescine may decrease phytochelatin synthesis at enzymatic and gene expression levels. Although the metabolism of phytochelatins and higher polyamines are linked with each other, the direct relationship between them under heavy metal stress has not yet been clarified. Two approaches were used to reveal the influence of polyamine content on cadmium stress responses, particularly with regard to phytochelatin synthesis: putrescine pre-treatment of rice 2 plants followed by cadmium stress, and treatment with the putrescine synthesis inhibitor, 2-(difluoromethyl)ornithine combined with cadmium treatment. The results indicated that putrescine pre-treatment enhanced the adverse effect of cadmium, while the application of 2-(difluoromethyl)ornithine reduced it to a certain extent. These differences were associated with increased polyamine content, more intensive polyamine metabolism, but decreased thiol and phytochelatin contents. The gene expression level and enzyme activity of phytochelatin synthase also decreased in rice treated with putrescine prior to cadmium stress, compared to cadmium treatment alone. In contrast, the inhibition of putrescine synthesis during cadmium treatment resulted in higher gene expression level of phytochelatin synthase. The results suggest that polyamines may have a substantial influence on phytochelatin synthesis at several levels under cadmium stress in rice.
Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.