BackgroundMethanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge.MethodsThe activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy.ResultsSignificantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced.ConclusionsThe normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.
Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.
Background Glycerol is known to possess anti‐irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Objective Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)‐induced acute irritation. Methods The experiments were performed on male SKH‐1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Results Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS‐induced elevation of TEWL and moderated the irritant‐induced increase in dermal blood flow and in the number of leucocyte‐endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin‐1 alpha. However, expression of interleukin‐1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor‐alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Conclusion Both of the analysed polyols exert considerable anti‐irritant and anti‐inflammatory properties, but the effective concentration of xylitol is lower than that of glycerol.
To better understand the pathomechanism of psoriasis, a comparative proteomic analysis was performed with non-lesional and lesional skin from psoriasis patients and skin from healthy individuals. Strikingly, 79.9% of the proteins that were differentially expressed in lesional and healthy skin exhibited expression levels in non-lesional skin that were within twofold of the levels observed in healthy and lesional skin, suggesting that non-lesional skin represents an intermediate stage. Proteins outside this trend were categorized into three groups: I. proteins in non-lesional skin exhibiting expression similar to lesional skin, which might be predisposing factors (i.e., CSE1L, GART, MYO18A and UGDH); II. proteins that were differentially expressed in non-lesional and lesional skin but not in healthy and lesional skin, which might be non-lesional characteristic alteration (i.e., CHCHD6, CHMP5, FLOT2, ITGA7, LEMD2, NOP56, PLVAP and RRAS); and III. proteins with contrasting differential expression in non-lesional and lesional skin compared to healthy skin, which might contribute to maintaining the non-lesional state (i.e., ITGA7, ITGA8, PLVAP, PSAPL1, SMARCA5 and XP32). Finally, proteins differentially expressed in lesions may indicate increased sensitivity to stimuli, peripheral nervous system alterations, furthermore MYBBP1A and PRKDC were identified as potential regulators of key pathomechanisms, including stress and immune response, proliferation and differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.