Protein turnover is required for synapse maintenance and remodelling and may impact memory duration. We quantified the lifetime of postsynaptic protein PSD95 in individual excitatory synapses across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of protein lifetimes that may extend from a few hours to several months, with distinct spatial distributions in dendrites, neuron types and brain regions. Short protein lifetime (SPL) synapses are enriched in developing animals and in regions controlling innate behaviors, whereas long protein lifetime (LPL) synapses accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. The protein lifetime synaptome architecture is disrupted in an autism model, with synapse protein lifetime increased throughout the brain. These findings add a further layer to synapse diversity in the brain and enrich prevailing concepts in behavior, development, ageing and brain repair.
Two-stage screening:1) Abstract screen: animal models of cauda equina compression for a maximum 1 week duration 2) Full-text screen: constant, single-level, paracentral pressure defined in mmHg.Decompression: studies of compression followed by decompression that met the same criteria were also included.Exclusion: studies using percentage or size of compression rather than pressure, and those using multi-level compression or circumferential compression.Controls: we used either pre-compression values or those from concurrent sham operated animals, for decompression studies we used pre-decompression values.
Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the molecular composition of excitatory synapses, the postnatal expansion of synapse diversity and the acquisition of normal synaptome architecture were delayed in all brain regions, interfering with networks and electrophysiological simulations of cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synapse diversity and synaptome architecture to the normal developmental trajectory. Synapse subtypes with rapid protein turnover mediated the synaptome remodeling. This brain-wide capacity for remodeling of synapse molecular composition to recover and maintain the developmental trajectory of synaptome architecture may help confer resilience to neurodevelopmental genetic disorders.
Optical imaging of protein aggregates in living and post-mortem tissue can often be impeded by unwanted fluorescence, prompting the need for novel methods to extract meaningful signal in complex biological environments. Historically, benzothiazolium derivatives, prominently Thioflavin T, have been the state-of-the-art fluorescent probes for amyloid aggregates, but their optical, structural, and binding properties typically limit them to in vitro applications. This study compares the use of novel uncharged derivative, PAP_1, with parent Thioflavin T as a fluorescence lifetime imaging probe. This is applied specifically to imaging recombinant α-synuclein aggregates doped into brain tissue. Despite the 100-fold lower brightness of PAP_1 compared to that of Thioflavin T, PAP_1 binds to α-synuclein aggregates with an affinity several orders of magnitude greater than Thioflavin T; thus, we observe a specific decrease in the fluorescence lifetime of PAP_1 bound to α-synuclein aggregates, resulting in a separation of >1.4 standard deviations between PAP_1-stained brain tissue background and α-synuclein aggregates that is not observed with Thioflavin T. This enables contrast between highly fluorescent background tissue and amyloid fibrils that is attributed to the greater affinity of PAP_1 for α-synuclein aggregates, avoiding the substantial off-target staining observed with Thioflavin T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.