The tumour-associated antigen UK114, isolated from goat liver, belongs to the YER057c/YIL051c/YjgF protein family, which has members in both the prokaryotes and eukaryotes. The crystal structure of a mammalian representative, goat UK114, was determined, revealing a trimeric arrangement in the crystal. It was confirmed by ultracentrifugation that UK114 is a trimer in solution. These results are in agreement with the published structures of homologues from unicellular organisms, but contrast with those reported for the rat homologue of UK114, for which a dimeric quaternary structure was proposed.
Proteins UK114 and p14.5 are both members of the putative family of small proteins YER057c/YIL051c/YjgF. The biological role of these proteins is not understood very well, and in addition, their oligomeric structure in solution remains controversial. We therefore investigated the oligomeric structure of UK114 and p14.5 using a number of methods. Both proteins have exhibited a homotrimeric structure in solution. Indeed the trimeric structure of the two proteins appeared to be so similar that when protein subunits derived from different species were mixed, stable heterotrimeric complexes (monomer ratio of 1:2 and 2:1 of UK114 and p14.5, respectively) could be formed in vitro. Furthermore, the trimeric structure of both UK114 and p14.5 proved essential for the stoichiometric hydrophobic ligand, such as fatty acid binding activity of the two proteins.
Granulocyte colony-stimulating factor (G-CSF) has found widespread clinical application, and modified forms with improved biopharmaceutical properties have been marketed as well. PEGylation, the covalent modification of G-CSF with polyethylene glycol (PEG), has a beneficial effect on drug properties, but there are concerns connected to the immunogenicity of PEGylated compounds and bioaccumulation of the synthetic polymer. To overcome challenges connected with chemical modifications, we developed fusion proteins composed of two G-CSF molecules connected via different peptide linkers. Three different homodimeric G-CSF proteins were purified, and their in vitro and in vivo activities were determined. A G-CSF dimer, GCSF-Lα, was constructed using an alpha-helix-forming peptide linker, and it demonstrated an extended half-life in serum with a stronger neutrophil response as compared to the monomeric G-CSF protein. The GCSF-Lα protein, therefore, might be selected for further studies as a potential drug candidate.
BackgroundGardnerella vaginalis is identified as the predominant colonist of the vaginal tract in women with bacterial vaginosis. Vaginolysin (VLY) is a protein toxin released by G. vaginalis. VLY possesses cytolytic activity and is considered as a main virulence factor of G. vaginalis. Inhibition of VLY-mediated cell lysis by antibodies may have important physiological relevance.ResultsSingle-chain variable fragments of immunoglobulins (scFvs) were cloned from two hybridoma cell lines producing neutralizing antibodies against VLY and expressed as active proteins in E. coli. For each hybridoma, two variants of anti-VLY scFv consisting of either VL-VH or VH-VL linked with a 20 aa-long linker sequence (G4S)4 were constructed. Recovery of scFvs from inclusion bodies with subsequent purification by metal-chelate chromatography resulted in VLY-binding proteins that were predominantly monomeric. The antigen-binding activity of purified scFvs was verified by an indirect ELISA. The neutralizing activity was investigated by in vitro hemolytic assay and cytolytic assay using HeLa cell line. Calculated apparent Kd values and neutralizing potency of scFvs were in agreement with those of parental full-length antibodies. VH-VL and VL-VH variants of scFvs showed similar affinity and neutralizing potency. The anti-VLY scFvs derived from hybridoma clone 9B4 exhibited high VLY-neutralizing activity both on human erythrocytes and cervical epithelial HeLa cells.ConclusionsHybridoma-derived scFvs with VLY-binding activity were expressed in E. coli. Recombinant anti-VLY scFvs inhibited VLY-mediated cell lysis. The monovalent scFvs showed reduced affinity and neutralizing potency as compared to the respective full-length antibodies. The loss of avidity could be restored by generating scFv constructs with multivalent binding properties. Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in prokaryote expression system. G. vaginalis caused infections continue to be a world-wide problem, therefore neutralizing recombinant antibodies may provide novel therapeutic agents useful in the treatment of bacterial vaginosis and other diseases caused by G. vaginalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.