The aim of this review is to identify the most representative measures of subjective and objective mental workload in driving, and to understand how the subjective and objective levels of mental workload influence the performance as a function of situation complexity and driving experience, i.e., to verify whether the increase of situation complexity and the lack of experience increase the subjective and physiological levels of mental workload and lead to driving performance impairments. This review will be useful to both researchers designing an experimental study of mental workload and to designers of drivers’ training content. In the first part, we will broach the theoretical approach with two factors of mental workload and performance, i.e., situation complexity and driving experience. Indeed, a low complex situation (e.g., highways), or conversely a high complex situation (e.g., town) can provoke an overload. Additionally, performing the driving tasks implies producing a high effort for novice drivers who have not totally automated the driving activity. In the second part, we will focus on subjective measures of mental workload. A comparison of questionnaires usually used in driving will allow identifying the most appropriate ones as a function of different criteria. Moreover, we will review the empirical studies to verify if the subjective level of mental workload is high in simple and very complex situations, especially for novice drivers compared to the experienced ones. In the third part, we will focus on physiological measures. A comparison of physiological indicators will be realized in order to identify the most correlated to mental workload. An empirical review will also take the effect of situation complexity and experience on these physiological indicators into consideration. Finally, a more nuanced comparison between subjective and physiological measures will be established from the impact on situation complexity and experience.
Creating an integrative research framework that extends a model frequently used in the Information Systems field, the Technology Acceptance Model, together with variables used in the Education field, this empirical study investigates the factors influencing student performance as reflected by their final course grade. The Technology Acceptance Model explains computer acceptance in general terms. The model measures the impact of external variables on internal beliefs, attitudes, and intentions. Perceived Usefulness and Perceived Ease of Use, two main constructs in the model, refer to an individual's perception of how the adoption of a new technology will increase their efficiency, and the individual's perception of how easy the technology will be to use. The lower the perceived effort is, the easier the technology will be to adopt. Thus, Perceived Usefulness, Perceived Ease of Use, Computer Self-Efficacy, and Computer Anxiety were measured to determine their effect on student performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.