A series of positron emission tomography scans was made on two monkeys during a 16-month period when they received manganese(IV)oxide by subcutaneous injection. The distribution of [11C]-nomifensine uptake, indicating dopamine terminals, was followed in both monkey brains. The brain distributions of [11C]-raclopride, demonstrating D2 dopamine receptors, and [11C]-L-dopa, as a marker of dopamine turnover, were followed in one monkey each. The monkeys developed signs of poisoning namely unsteady gait and hypoactivity. The [11C]-nomifensine uptake in the striatum was reduced with time and reached a 60% reduction after 16 months exposure. This supports the suggestion that dopaminergic nerve endings degenerate during manganese intoxication. The [11C]-L-dopa decarboxylation was not significantly altered indicating a sparing of [11C]-L-dopa decarboxylation during manganese poisoning. A transient decrease of [11C]-raclopride binding occurred but at the end of the study D2-receptor binding had returned to starting values. The magnetic resonance imaging (MRI) revealed that the manganese accumulated in the globus pallidus, putamen and caudate nucleus. There were also suggestions of gliosis/edema in the posterior limb of the internal capsule. MRI might be useful to follow manganese intoxication in humans as long as the scan is made within a few months of exposure to manganese, i.e. before a reversal of the manganese accumulation.
Four monkeys were exposed to a total of 8 g each of manganese as oxide by repetitive subcutaneous injections during 5 months, after which they were left for 1 week to 6 months before they were sacrificed. All animals developed hyperactive behaviour after about 2 months. About 5 months after the start of the exposure the animals became hypoactive with an unsteady gait, and subsequently an action tremor appeared in some of the animals. The animals lost power in both upper and lower limbs and the movements of the hands and feet were very clumsy. The serum content of manganese rose 10-40 times during the exposure time and the content in brain was generally increased more than 10 times, with the highest content found in globus pallidus and putamen. The observed neurochemical effects were also largest in globus pallidus and putamen. In these regions there was a considerable depletion of dopamine and 3,4-dihydroxyphenylacetic acid, while the homovanillic acid content remained almost unchanged. A severe neuronal cell loss was observed in globus pallidus but not in other regions. This is in accordance with results from the most recent neuropathological study of a human suffering from chronic manganese poisoning [Yamada et al. (1986) Acta Neuropathol 70: 273-278] where globus pallidus was devoid of neuronal cells while the content of pigmented cells in substantia nigra was normal. Our data suggest a reduction in number of dopaminergic nerve terminals, as the activity of the dopamine synthesizing enzyme DOPA-decarboxylase was also lowered.(ABSTRACT TRUNCATED AT 250 WORDS)
The density of four different receptors and one marker of dopamine uptake sites were analyzed in monkey brains after manganese exposure (0.1 g manganese per month during 26 months, a dose comparable to that workers might inhale in dusty environments) by means of quantitative receptor autoradiography. The binding of 3H-mazindol to the dopamine uptake sites was reduced by 75% in both the head of the caudate nucleus and putamen, while it remained unchanged in the other regions analyzed. The binding of the D1 receptor ligand 3H-SCH 23,390 was reduced about 45% in the same areas as mazindol binding, while the density of D2 receptors was unaffected. The muscarinic acetylcholine receptors as well as GABAA receptors remained also unchanged in all brain areas analyzed after manganese exposure. Thus the dopaminergic neurons must be considered to be vulnerable to manganese concentrations attainable in the work environment. Our results also indicate that postsynaptic structures containing D1 receptors are sensitive while cells containing D2 receptors are either spared or compensated for by up-regulation of the number of receptors on remaining sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.