Enhanced expression of matrix metalloproteinase (MMP)-1/interstitial collagenase and MMP-3/stromelysin-1 in skin fibroblasts and subsequent damage of dermal connective tissue in the context of sun-induced premature aging and skin tumour progression is causally linked to UVB irradiation. Here, we were interested in identifying components of the complex signal-transduction pathway underlying UVB-mediated up-regulation of these delayed UV-responsive genes and focused on components maximally activated early after irradiation. A 2.3-fold increase in protein kinase CK2 activity was measured at 20-40 min after low-dose UVB irradiation (at 10 mJ/cm2) of dermal fibroblasts. This UVB-mediated increase in CK2 activity was abrogated by pharmacological approaches using non-toxic concentrations of the CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB). Preincubation of fibroblasts with DRB prior to UVB irradiation lowered MMP-1 by 49-69% and MMP-3 protein levels by 55-63% compared with UVB-irradiated controls. By contrast, the CK2 inhibitor did not affect the UVB-triggered transcription of MMPs. Furthermore, UVB irradiation of fibroblasts overexpressing a kinase-inactive mutant of CK2 (CK2alpha-K68A-HA) resulted in lowering of the protein levels of MMP-1 by 25% and MMP-3 by 22% compared with irradiated fibroblasts transfected with the vector control. This reduction in MMP protein levels correlated with the transfection efficiency. Taken together, we describe a novel aspect of protein kinase CK2, namely its inducible activity by UVB irradiation, and provide evidence that CK2 is an early mediator of the UVB-dependent up-regulation of MMP-1 and MMP-3 translation, whereas their major tissue inhibitor of matrix metalloproteinase-1 is not affected by CK2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.