Three different 3D QSAR methods have been applied for a common pharmacophore model of 45 calcium antagonistically active 1,4-dihydropyridines (DHP) in order to find best correlation of interaction fields and biological activity. Analysis for the entire data set yielded r 2 /q 2 cv values in a range starting from 0.821/0.620 (GRID/ GOLPE) over 0.872/0.600 (CoMFA) to 0.908/0.744 (CoM-SIA). The robustness of these models was tested not only via leave-one-out but also by leave-9-out crossvalidations. Furthermore, models were constructed using a subset of 37 DHPs (training set) allowing the prediction of activity for the residual 8 DHPs (test set). The training set yielded r 2 / q 2 cv values starting from 0.826/0.672 (GRID/GOLPE) over 0.872/0.540 (CoMFA) to 0.899/0.662 (CoMSIA). For the test set r 2 pred values from 0.677 (GRID/GOLPE) over 0.639 (CoMFA) to 0.470 (CoMSIA) were calculated. Besides the statistics, each 3D QSAR model yields further information by analysis of the generated contour maps. Consideration of the CoMFA and CoMSIA fields indicates unfavourable steric interactions for bulky moieties in 4'-position. On the other hand, sterical demanding 2'-and 3'-substituents are favourable and the biological activity of DHPs is further increased if these moieties produce a negative electrostatic potential. In contrast, high p-electron density on top of and parallel to the 4-phenyl ring beside the 2'-position is associated with decreasing activity. This could point to repulsive electronic interactions with binding site residues or to the potential of electron-deficient 4-aryl moieties to behave as electron acceptors in a charge transfer (CT) mechanism.
The purpose of this theoretical study was to investigate the molecular features of some structurally unusual calcium antagonists with experimentally proved affinity to the diltiazem-binding site at L-type calcium channels. Therefore, sterical and electronic characteristics of cis-/trans-diclofurime, the verapamil-like derivatives McN-5691 and McN-6186 as well as the natural products papaverine, laudanosine, antioquine and tetrandrine were compared with the pharmacophoric requirements detected for classical diltiazem-like derivatives. This yielded a common pharmacophore model for all of these compounds. Based on this model, one single negative molecular electrostatic potential induced by the free electron pairs of the oxime oxygen of trans-diclofurime was detected that might be responsible for the stronger effects compared to the cis isomer. Furthermore, the dual diltiazem- and verapamil-like features of McN-5691 (and McN-6186) as well as the distinct pharmacophoric assignment of the laudanosine enantiomers may be interpreted on a molecular level. Finally, the crucial partial structure of the bis-benzylisoquinoline derivatives antioquine and tetrandrine being responsible for the calcium antagonistic effects could be revealed by superposition on the most active benzothiazepinone derivative 8-methoxydiltiazem. The results obtained for these unusual diltiazem mimics are discussed taking into consideration earlier findings for classical diltiazem-like derivatives.
Based on these molecular descriptors, the quinazolinone derivative MCI-176 is predicted to be a potential ligand of the diltiazem binding site.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.