Background Intestinal tuberculosis still has a high incidence, especially in developing countries. The biggest challenge of this disease is the establishment of the diagnosis because the clinical features are not typical. Investigations such as culture, acid-fast bacilli (AFB) staining, and histopathology have low sensitivity, so other investigations are needed. Latest molecular-based diagnostic modalities such as GeneXpert, interferon-gamma (IFN-γ) release assays (IGRA), polymerase chain reaction (PCR), multiplex-PCR, and immunological markers are expected to help diagnose intestinal tuberculosis. This article review will examine the latest diagnostic modalities that can be used as a tool in establishing the diagnosis of intestinal tuberculosis. Results Through a literature search, we were able to review the diagnostic values of various available diagnostic modalities as the appropriate additional test in intestinal tuberculosis. Culture as a gold standard has a sensitivity and specificity value of 9.3% and 100% with the MGIT BACTEC system as the most recommended medium. The sensitivity values of AFB staining, histopathology examination, GeneXpert, IGRA, PCR, multiplex-PCR and, immunological markers were ranged between 17.3 and 31%; 68%; 81–95.7%; 74–88%; 21.6–65%; 75.7–93.1%; and 52–87%, respectively. Meanwhile the specificity values were 100%; 77.1%; 91–100%; 74–87%; 93–100%; 96.4–100%; and 70–95%, respectively. Conclusion The combination of clinical examination, conventional examination, and the latest molecular-based examination is the best choice for establishing the diagnosis of intestinal tuberculosis. Most recent modalities such as multiplex PCR and immunological marker examinations are diagnostic tools that deserve to be used in diagnosing intestinal tuberculosis as their sensitivity and specificity values are quite high and more evidences are expected to support the application of these examinations shortly soon.
Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.
Background Skeletal muscle mishaps are the most well-known incidents in society, especially among athletes and the military population. From the various urgency, this accident needs to be cured more quickly. However, the current treatment still has some shortcomings and is less effective. In this case, Paired box 3 and Paired box 7 (Pax3/Pax7) proteins that induce stem cells could potentially be an alternative treatment for skeletal muscle injuries. This paper aimed to analyse the potential treatment of Pax3/Pax7 proteins inducing the stem cell for skeletal muscle injuries. The main body of the abstract We did a narrative review by gathering several scientific journals from several leading platforms like PubMed and Scopus. As common accidents, skeletal muscle disease could be due to workplace and non-workplace causes. The highest risk occurs in the athlete and military environment. The treatment of current skeletal muscle injuries is protection, rest, ice, compression, and elevation (PRICE), non-steroidal anti-inflammatory drugs (NSAIDs), and mechanical stimulation. However, it is considered less effective, especially in NSAIDs, inhibiting myogenic cell proliferation. The current finding indicates that the stem cells have markers known as Pax3/Pax7. The role of both markers in muscle injury, Pax3/Pax7, as transcription factors will induce cell division by H3K4 methylation mechanisms and chromatin modifications that stimulate gene activation. Conclusion Regulation by Pax3/Pax7 factors that affect stem cells and stem cell proliferation is one of the alternative treatments. This regulation can accelerate the healing of injury victims, especially injuries to the skeletal muscles. Finally, after being compared, Pax3/Pax7 induces stem cells to have the potential to be one of the skeletal muscle injury treatments. Keywords Pax3 and Pax7, Pax3/Pax7, Skeletal muscle, Athlete, Stem cells, Cell proliferation, Injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.