Sundaland constitutes one of the largest and most threatened biodiversity hotspots; however, our understanding of its biodiversity is afflicted by knowledge gaps in taxonomy and distribution patterns. The subfamily Rasborinae is the most diversified group of freshwater fishes in Sundaland. Uncertainties in their taxonomy and systematics have constrained its use as a model in evolutionary studies. Here, we established a DNA barcode reference library of the Rasborinae in Sundaland to examine species boundaries and range distributions through DNA-based species delimitation methods. A checklist of the Rasborinae of Sundaland was compiled based on online catalogs and used to estimate the taxonomic coverage of the present study. We generated a total of 991 DNA barcodes from 189 sampling sites in Sundaland. Together with 106 previously published sequences, we subsequently assembled a reference library of 1097 sequences that covers 65 taxa, including 61 of the 79 known Rasborinae species of Sundaland. Our library indicates that Rasborinae species are defined by distinct molecular lineages that are captured by species delimitation methods. A large overlap between intraspecific and interspecific genetic distance is observed that can be explained by the large amounts of cryptic diversity as evidenced by the 166 Operational Taxonomic Units detected. Implications for the evolutionary dynamics of species diversification are discussed.
Benefits to plants in facultative ant protection mutualisms are highly variable. This allows examination of the sources of this variation and the mechanisms by which ants protect plants. We studied opportunistic interactions between ants and an extrafloral nectary-bearing vine, Dioscorea praehensilis, during 3 different years. Variation in plant protection among years was striking. Several factors affected the effectiveness of the biotic defence. Stems recently emerged from the underground tuber were self-supporting, contacting no other plants and encountering few foraging ants. Stems then became lianescent, and contact with supporting plants greatly increased ant recruitment. Both species and number of ant workers influenced the effect of ants on the major herbivore, the chrysomelid beetle Lilioceris latipennis. Protective actions included limitation of oviposition (reduction in the number of eggs laid on the plant) and predation, leading to increased larval mortality. The probability of successful predation was strongly dependent on larval size. If temporarily low ant-patrolling activity allows larvae to grow beyond a critical size, their mechanical (thick integument) or chemical (plant-derived compounds in a fecal shield) defences become more effective against ants. Secondary metabolites derived from the host plant thus appear to be important for the anti-predator mechanisms of this beetle, being necessary for its survival and reproduction on a host plant that actively recruits ants as a biotic defence against herbivores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.