This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
The cyclic polymer topology strongly alters the interfacial, physico-chemical properties of polymer brushes, when compared to the linear counterparts. In this study, we especially concentrated on poly-2-ethyl-2-oxazoline (PEOXA) cyclic and linear grafts assembled on titanium oxide surfaces by the "grafting-to" technique. The smaller hydrodynamic radius of ring PEOXAs favors the formation of denser brushes with respect to linear analogs. Denser and more compact cyclic brushes generate a steric barrier that surpasses the typical entropic shield by a linear brush. This phenomenon, translates into an improved resistance towards biological contamination from different protein mixtures. Moreover, the enhancement of steric stabilization coupled to the intrinsic absence of chain ends by cyclic brushes, produce surfaces displaying a super-lubricating character when they are sheared against each other. All these topological effects pave the way for the application of cyclic brushes for surface functionalization, enabling the modulation of physico-chemical properties that could be just marginally tuned by applying linear grafts.
Tethering macromolecules to surfaces represents a versatile approach for functionalizing, protecting, and structuring both organic and inorganic materials. In this study, thin films of poly(acrylamide) (PAAm) brushes and covalently cross-linked hydrogel brushes were grown from iniferter-functionalized silicon substrates by UVLED-initiated photopolymerization and their properties subsequently studied by means of a variety of analytical methods. The employed photografting method allowed the controlled fabrication of very thick films (up to 1 μm) in an aqueous environment, over a period of less than 1 h of polymerization and in the absence of side reactions. PAAm covalently cross-linked hydrogel brushes were prepared by feeding trace amounts of the cross-linker bis(acrylamide) (up to 1.0 wt % of monomer solution) into the reaction vessel. Both bulk and interfacial properties of these polymer films were found to be strongly influenced by lateral cross-linking of the grafted polymer chains. In agreement with theoretical expectations, the decrease of polymer-brush conformational freedom with increasing cross-link density resulted in a substantial increase of film wettability with water. The swelling ratio of the hydrogel brushes, as measured by ellipsometry and atomic force microscopy (AFM), also confirmed the formation of grafted networks and was found to be directly related to the amount of cross-linker in the monomer feed. In addition, the Young’s moduli and tribological properties of PAAm brushes and hydrogel brushes were tuned by adjusting the cross-linker concentration. Because of the additional constraint given by the surface tethering of each chain end, intermolecular cross-linking generated very high mechanical stresses within the brush structure. Covalently cross-linked hydrogel brushes thus displayed higher Young’s moduli and coefficients of friction, when compared to the grafted polymer-brush analogues. These hydrogel brushes present an opportunity for readily tailoring physical properties, especially as they allow tuning of the physical characteristics of surfaces while maintaining the interfacial chemical composition nearly constant.
Thermoresponsive brushes with a tunable structure are grafted in a controlled way to gold substrates, exploiting an initiator–transfer–terminator agent (iniferter)‐based photopolymerization (see figure). The chain length of the polymers is controlled by using UV light as a trigger and the end groups exposed are shown to be easily exchangeable following the grafting process. Reversible volume shrinkage/expansion, roughening, and variation of adhesion are observed.
The era of poly(ethylene glycol) (PEG) brushes as a universal panacea for preventing non-specific protein adsorption and providing lubrication to surfaces is coming to an end. In the functionalization of medical devices and implants, in addition to preventing non-specific protein adsorption and cell adhesion, polymer-brush formulations are often required to generate highly lubricious films. Poly(2-alkyl-2-oxazoline) (PAOXA) brushes meet these requirements, and depending on their side-group composition, they can form films that match, and in some cases surpass, the bioinert and lubricious properties of PEG analogues. Poly(2-methyl-2-oxazine) (PMOZI) provides an additional enhancement of brush hydration and main-chain flexibility, leading to complete bioinertness and a further reduction in friction. These data redefine the combination of structural parameters necessary to design polymer-brush-based biointerfaces, identifying a novel, superior polymer formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.