The research reported in this study was designed to answer three questions: (a) What misconceptions do eighth grade students have concerning the chemistry concepts from their textbooks. (b) How is reasoning ability related to misconceptions concerning chemistry concepts. (c) How effective are textbooks in teaching an understanding of chemistry concepts? Five chemistry concepts were used in the study: chemical change, dissolution, conservation of atoms, periodicity, and phase change. Problems concerning the five concepts were given to 247 eighth‐grade students in order to assess the students' degree of understanding of chemistry concepts and to identify specific misconceptions. Two pencil‐and‐paper Piaget‐type tasks were used to assess intellectual level. A comparison of intellectual level and scores on the chemistry concepts showed moderate correlations. However, the small number of formal operational students in the sample makes these results inconclusive. A study of the level of understanding of the five chemistry concepts and the nature of the misconceptions held by students indicate a general failure of textbooks to teach a reasonable understanding of chemistry concepts.
This study examined 7th‐grade life science students, 10th‐grade biology students, and college zoology students for understanding of the concept of diffusion. Responses from 100 students from each grade level were randomly selected for data analysis. Each student responded to a test packet consisting of a biographical questionnaire, two Piagetian‐like developmental tasks, and a Concept Evaluation Statement (CES). The CESs were used to measure the students' understandings of the concept of diffusion. None of the 300 students across the three grade levels exhibited complete understanding of the diffusion concept. There was no appreciable difference among the grade levels in sound or partial understanding, misconceptions, or “no understanding.” An analysis of the misconceptions exhibited by the college sample showed that many of the misconceptions could be traced to a misapplication of scientific terminology.
Background: Research has revealed that high school students matriculate to college holding misconceptions related to biological evolution. These misconceptions interfere with students' abilities to grasp accurate scientific explanations and serve as fundamental barriers to understanding evolution. Because the scientific community regards evolution as a vital part of science education, it is imperative that students' misconceptions are identified and their sources revealed. The purpose of this study was to identify the types and prevalence of biological evolution-related misconceptions held by high school biology teachers and their students, and to identify those factors that contribute to student acquisition of such misconceptions, with particular emphasis given to the role of the teacher. Methods: Thirty-five teachers who taught at least one section of Biology I during the 2010 to 2011 academic year in one of 32 Oklahoma public high schools and their respective 536 students served as this study's unit of analysis. The Biological Evolution Literacy Survey, which possesses 23 biological evolution misconception statements grouped into five categories, served as the research tool for identifying teachers' misconceptions prior to student instruction and students' misconceptions both prior to and following instruction in biological evolution concepts, calculating conception index scores, and collecting demographic data. Multiple statistical analyses were performed to identify statistically significant (p < .05) relationships between variables related to student's acquisition of biological evolution-related misconceptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.