Background: Cervical cancer is the leading cause of cancer death among women in Ghana, West Africa. The cervical cancer mortality rate in Ghana is more than three times the global cervical cancer mortality rate. Pap tests and visual inspection with acetic acid wash are widely available throughout Ghana, yet less that 3% of Ghanaian women get a cervical cancer screening at regular intervals. Objective: This exploratory study was to identify psychological barriers to cervical cancer screening among Ghanaian women with and without cancer using a mixed methods approach. Methods: Semi-structured interviews were conducted with 49 Ghanaian women with cancer and 171 Ghanaian women who did not have cancer. Results: The results of the quantitative analysis indicated that cancer patients where not more likely to have greater knowledge of cancer signs and symptoms than women without cancer. Analysis of the qualitative data revealed several psychological barriers to cervical cancer screening including, common myths about cervical cancer, misconceptions about cervical cancer screening, the lack of spousal support for screening, cultural taboos regarding the gender of healthcare providers, and the stigmatization of women with cervical cancer. Conclusion: The results of this study can be used to inform the development of culturally relevant cervical cancer education interventions aimed at addressing the psychological barriers to cervical cancer screening perceived by Ghanaian women.
The incidence of antimicrobial resistance among microbial communities is a major threat to global health care and security. Landfills, which are reservoirs for many pharmaceuticals, provide a conducive habitat for antimicrobial-resistant microbes and resistant gene transfer and are therefore a major contributor to the phenomenon of antimicrobial resistance. Hence, this study determined the levels of three widely used antibiotics, metronidazole, penicillin, and amoxicillin, and the occurrence of antimicrobial resistance amongst microbes in soil and leachate samples from active and abandoned landfill sites in Kumasi, Ghana. Soil samples were collected from one active and four abandoned landfills, while leachate specimen was collected only from the active landfill. Sonication and solid-phase extraction (SPE) were used for sample preparation, followed by analysis via an HPLC-PDA method. Isolation and characterization of bacteria were done using standard bacteriological techniques. Antibiotic susceptibility testing was determined following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Antibiotics were detected at very high concentrations in the specimen collected from both active and abandoned landfill sites. For leachate samples obtained from Dompoase, penicillin was present at the highest concentration (67.42 ± 5.35 μg/mL, p<0.05) followed by metronidazole (18.25 ± 7.92 μg/mL) and amoxicillin (10.96 ± 6.93 μg/mL). In general, the levels of antibiotics in soil samples were similar at both active and abandoned landfill sites. Nonetheless, as with leachates, penicillin levels were much higher (p<0.05) than levels of amoxicillin and metronidazole within any particular site. When screened against some antibiotics, Enterobacteriaceae and some Bacillus and Listeria species isolated from the soil and leachate samples proved to be resistant. The high levels of antibiotics coupled with the presence of resistant microbes at these landfills sites call for immediate measures to halt the disposal of pharmaceuticals in the environment so as to avert any possible public health setback.
There has been high interest in the use of traditional medicines for COVID‐19 from early in the course of the pandemic. Significant advances in the science of ethnopharmacology have helped to introduce chemical entities identified from natural sources into modern medicine. However, the wider integration of natural products into the modern drug discovery process will require enhanced collaboration amongst the pharmaceutical industry, academic research units, regulatory bodies, ethics review committees and local, regional, continental and international organizations. Revisiting this topic holds promise of benefit for both the current and future pandemics.
Background:Glyphaea brevis (Spreng) Monachino (Tiliaceae) have traditional uses in the management of conditions characterized by infections, inflammatory disorders and oxidative stress. The paper aims to report the comparative data on the leaves and stem bark of Glyphaea brevis with respect to their antibacterial, anti-inflammatory and antioxidant effects.Materials and Methods:The antibacterial effects of the 70% ethanol extracts of the leaves and stem bark were determined using the agar well diffusion and micro dilution assays. The anti-inflammatory activity was assessed using the carrageenan-induced oedema model in 7-day old cockerels. Using the DPPH free radical scavenging, total antioxidant and total phenol content assays, the antioxidant potential of the extract was assessed.Results:The bark extract had the higher antibacterial effect against 6 of the 8 microorganisms used. Noteworthy are its activity against Bacillus subtilis and Enterococcus faecalis with lowest MIC value of 500 μg/mL respectively. In doses of 30, 100 and 300 mg/kg, both extracts reduced the carrageenan-induced oedema in 7-day old cockerels. Based on the ED50 values, both extracts demonstrated similar potencies (ED50 =21.00 mg/kg). The stem bark extract exhibited higher free radical scavenging activity (IC50 = 1.392 mg/mL) compared to the leaf extract (IC50 = 9.509 mg/mL). In the total phenol content, the bark extract showed higher content (15.91 mg/g of dry mass) compared to the leaf extract (2.68 mg/g dry mass). Both extracts demonstrated equal potencies in the total antioxidant capacity determinations (0.60 mg/g dry weight of extract).Conclusions:The results of this work provide scientific evidence for the traditional uses of Glyphaea brevis.
One new flavonoid glycoside, along with three known flavonoid glycosides were isolated from the stem bark of Margaritaria discoidea, which is traditionally used in the management of wounds and skin infections in Ghana. The new flavonoid glycoside was elucidated as hydroxygenkwanin-8-C-[α-rhamnopyranosyl-(1 → 6)]-β-glucopyranoside (1) on the basis of spectroscopic analysis. The isolated compounds demonstrated free-radical scavenging as well as some level of antibacterial activities. Microorganisms including Staphylococcus aureus are implicated in inhibiting or delaying wound healing. Therefore, any agent capable of reducing or eliminating the microbial load present in a wound as well as decreasing the levels of reactive oxygen species may facilitate the healing process. These findings therefore provide some support to the ethnopharmacological usage of the plant in the management of wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.