hOAT1 is a renal membrane protein able to efficiently transport acyclic nucleoside phosphonates (ANPs). When expressed in CHO cells, hOAT1 mediates the uptake and cytotoxicity of ANPs suggesting that it plays an active role in the nephrotoxicity associated with cidofovir CMV therapy and high-dose adefovir HIV therapy. Although efficiently transported by hOAT1, tenofovir did not show any significant cytotoxicity in isolated human proximal tubular cells, which correlates with the lack of nephrotoxicity observed in HIV-infected patients on prolonged tenofovir therapy.
This paper is available online at http://dmd.aspetjournals.org ABSTRACT:Oseltamivir is an ester prodrug of the active metabolite [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a potent and selective inhibitor of neuraminidase enzyme of influenza virus. Oseltamivir is rapidly hydrolyzed by hepatic carboxylesterases to Ro 64-0802, which is then exclusively excreted by glomerular filtration and active tubular secretion without further metabolism. In vivo and in vitro studies were conducted to evaluate the renal drug-drug interaction potential of oseltamivir. Crossover studies were conducted in healthy subjects in which oral oseltamivir was administered alone and coadministered with probenecid, cimetidine, or amoxicillin. Probenecid completely blocked the renal secretion of Ro 64-0802, increasing systemic exposure (area under the curve) by 2.5-fold, but no interaction was observed with cimetidine or amoxicillin. These in vivo data show that Ro 64-0802 is secreted via an organic anion pathway, but Ro 64-0802 does not inhibit amoxicillin renal secretion. In vitro effects of Ro 64-0802 on the human renal organic anionic transporter 1 (hOAT1) were investigated using novel Chinese hamster ovary cells stably transfected with hOAT1. Ro 64-0802 was found to be a low-efficiency substrate for hOAT1 and a very weak inhibitor of hOAT1-mediated transport of p-aminohippuric acid (PAH). Ro 64-0802 did not inhibit the hOAT1-mediated transport of amoxicillin. In contrast, probenecid effectively inhibited the transport of PAH, Ro 64-0802, and amoxicillin via hOAT1. These in vitro observations are consistent with the in vivo data, validating the usefulness of the in vitro system for evaluating such drugdrug interaction. The study results demonstrate that oseltamivir has a low drug-drug interaction potential at the renal tubular level due to inhibition of hOAT1.Oseltamivir is an orally bioavailable prodrug of Ro 64-0802 1 (GS4071), a potent and selective inhibitor of influenza A and B neuraminidase (Bardsley-Elliot and Noble, 1999). After oral administration, the prodrug is extensively hydrolyzed to its active metabolite Ro 64-0802, which is then extensively excreted by glomerular filtration and renal tubular secretion without further metabolism (He et al., 1999a).Active renal secretion occurs via specific transport proteins located in the basolateral and apical membrane of the proximal tubule (Pritchard and Miller, 1993). Two general drug secretion pathways exist in proximal tubules, one for basic compounds (organic cation transport system) and another for acidic compounds (organic anion transport system). Thus far, two active pathways capable of transporting organic cations have been identified in kidney, OCT1 and OCT2 (Grundemann et al., 1994;Okuda et al., 1996). Similarly, several renal organic anion transporters have been recently cloned and characterized. Of these, organic anion transporter 1 (OAT1) is the main component mediating tubular secretion of organic acids (Sekine, 1...
Human respiratory syncytial virus (RSV) is a major cause of respiratory tract infections worldwide. Several novel small-molecule inhibitors of RSV have been identified, but they are still in preclinical or early clinical evaluation. One such inhibitor is a recently discovered triphenol-based molecule, VP-14637 (ViroPharma). Initial experiments suggested that VP-14637 acted early and might be an RSV fusion inhibitor. Here we present studies demonstrating that VP-14637 does not block RSV adsorption but inhibits RSV-induced cell-cell fusion and binds specifically to RSV-infected cells with an affinity corresponding to its inhibitory potency. VP-14637 is capable of specifically interacting with the RSV fusion protein expressed by a T7 vaccinia virus system. RSV variants resistant to VP-14637 were selected; they had mutations localized to two distinct regions of the RSV F protein, heptad repeat 2 (HR2) and the intervening domain between heptad repeat 1 (HR1) and HR2. No mutations arose in HR1, suggesting a mechanism other than direct disruption of the heptad repeat interaction. The F proteins containing the resistance mutations exhibited greatly reduced binding of VP-14637. Despite segregating with the membrane fraction following incubation with intact RSV-infected cells, the compound did not bind to membranes isolated from RSV-infected cells. In addition, binding of VP-14637 was substantially compromised at temperatures of <22°C. Therefore, we propose that VP-14637 inhibits RSV through a novel mechanism involving an interaction between the compound and a transient conformation of the RSV F protein.
Here we present data on the mechanism of action of VP-14637 and JNJ-2408068 (formerly R-170591), two small-molecule inhibitors of respiratory syncytial virus (RSV). Both inhibitors exhibited potent antiviral activity with 50% effective concentrations (EC 50 s) of 1.4 and 2.1 nM, respectively. A similar inhibitory effect was observed in a RSV-mediated cell fusion assay (EC 50 ؍ 5.4 and 0.9 nM, respectively). Several drug-resistant RSV variants were selected in vitro in the presence of each compound. All selected viruses exhibited significant cross-resistance to both inhibitors and contained various single amino acid substitutions in two distinct regions of the viral F protein, the heptad repeat 2 (HR2; mutations D486N, E487D, and F488Y), and the intervening domain between HR1 and HR2 (mutation K399I and T400A). Studies using [ 3 H]VP-14637 revealed a specific binding of the compound to RSV-infected cells that was efficiently inhibited by JNJ-2408068 (50% inhibitory concentration ؍ 2.9 nM) but not by the HR2-derived peptide T-118. Further analysis using a transient T7 vaccinia expression system indicated that RSV F protein is sufficient for this interaction. F proteins containing either the VP-14637 or JNJ-2408068 resistance mutations exhibited greatly reduced binding of [ 3 H]VP-14637. Molecular modeling analysis suggests that both molecules may bind into a small hydrophobic cavity in the inner core of F protein, interacting simultaneously with both the HR1 and HR2 domains. Altogether, these data indicate that VP-14637 and JNJ-2408068 interfere with RSV fusion through a mechanism involving a similar interaction with the F protein.
Secretion of small molecules from the systemic blood circulation into urine is one of the physiologically essential functions of the kidney. The human organic anion transporter (hOAT1) is a key component in the renal tubular secretion of negatively charged molecules including a variety of important therapeutics. In some cases, compounds interacting with hOAT1 may induce pharmacokinetic drug-drug interactions or cause nephrotoxicity. We developed a fluorescence-based, 96-well format assay using CHO cells stably expressing hOAT1, which allows for the evaluation of interactions between small molecules and hOAT1. The assay is based on the inhibition of the transport of 6-carboxyfluorescein, a high-affinity hOAT1 substrate (Km = 3.9 microM), which was identified as one of several fluorescent organic anions. The relative inhibition potency of various known hOAT1 substrates determined using the 6-carboxyfluorescein-based inhibition assay correlated well with their Km values, indicating that the fluorescent assay exhibits a proper specificity. This in vitro assay can be employed to evaluate the mechanism of renal clearance of organic anions, to assess potential drug-drug interactions and/or nephrotoxic effects of various therapeutics, and to screen for novel hOAT1 inhibitors that could serve as efficient nephroprotectants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.