Antibody-drug conjugates (ADC) are emerging as clinically effective therapy. We hypothesized that cancers treated with ADCs would acquire resistance mechanisms unique to immunoconjugate therapy and that changing ADC components may overcome resistance. Breast cancer cell lines were exposed to multiple cycles of anti-Her2 trastuzumab-maytansinoid ADC (TM-ADC) at IC 80 concentrations followed by recovery. The resistant cells, 361-TM and JIMT1-TM, were characterized by cytotoxicity, proteomic, transcriptional, and other profiling. Approximately 250-fold resistance to TM-ADC developed in 361-TM cells, and cross-resistance was observed to other non-cleavable-linked ADCs. Strikingly, these 361-TM cells retained sensitivity to ADCs containing cleavable mcValCitPABC-linked auristatins. In JIMT1-TM cells, 16-fold resistance to TM-ADC developed, with cross-resistance to other trastuzumab-ADCs. Both 361-TM and JIMT1-TM cells showed minimal resistance to unconjugated mertansine (DM1) and other chemotherapeutics. Proteomics and immunoblots detected increased ABCC1 (MRP1) drug efflux protein in 361-TM cells, and decreased Her2 (ErbB2) in JIMT1-TM cells. Proteomics also showed alterations in various pathways upon chronic exposure to the drug in both cell models. Tumors derived from 361-TM cells grew in mice and were refractory to TM-ADC compared with parental cells. Hence, acquired resistance to trastuzumab-maytansinoid ADC was generated in cultured cancer cells by chronic drug treatment, and either increased ABCC1 protein or reduced Her2 antigen were primary mediators of resistance. These ADCresistant cell models retain sensitivity to other ADCs or standardof-care chemotherapeutics, suggesting that alternate therapies may overcome acquired ADC resistance.
The stability of the connection between the antibody and the toxin can have a profound impact on ADC safety and efficacy. There has been increasing evidence in recent years that maleimide-based ADCs are prone to payload loss via a retro-Michael type reaction. Herein, we report a mild method for the hydrolysis of the succinimide-thioether ring which results in a "ring-opened" linker. ADCs containing this hydrolyzed succinimide linker show equivalent cytotoxicity, improved in vitro stability, improved PK exposure, and improved efficacy as compared to their nonhydrolyzed counterparts. This method offers a simple way to improve the stability, exposure, and efficacy of maleimide-based ADCs.
As a route to accessing the potential chemical diversity of uncultivable microbes from the soil, combinatorial biosynthetic libraries were constructed by cloning large fragments of DNA isolated from soil into a Streptomyces lividans host. Four novel compounds, terragines A (1), B (2), C (3), and D (4), were isolated from recombinant 436-s4-5b1, and another novel compound, terragine E (5), was isolated from 446-s3-102g1. The structures were determined by a combination of spectroscopic techniques, primarily 2D NMR.
A series of novel antibiotics with activity against methicillin-resistant staphylococci and vancomycin-resistant enterococci has been purified, and their structures have been characterized using spectroscopic analyses and chemical conversions. These antibiotics, designated mannopeptimycins alpha-epsilon (1-5), are glycosylated cyclic hexapeptides containing two stereoisomers of an unprecedented amino acid, alpha-amino-beta-[4'-(2'-iminoimidazolidinyl)]-beta-hydroxypropionic acid (Aiha), as a distinguishing feature. The cyclic peptide core of these antibiotics is attached to a mannosyl monosaccharide moiety in 2 and to mannosyl monosaccharide and disaccharide moieties in 1, 3, 4, and 5. The presence and position of an isovaleryl group in the terminal mannose (Man-B) in 3-5 are critical for retaining antibacterial potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.