Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology.
We develop a theoretical treatment of polarization spectroscopy and use it to make predictions about the general form of polarization spectra in the alkali atoms. Using our model, we generate theoretical spectra for the D2 transitions in 87 Rb, 85 Rb, and 133 Cs. Experiments demonstrate that the model accurately reproduces spectra of transitions from the upper hyperfine level of the ground state only. Among these, the closed transition F → F ′ = F + 1 dominates, with a steep gradient through line center ideally suited for use as a reference in laser locking.
The use of Nye's dislocation tensor for calculating the density of geometrically necessary dislocations (GND) is widely adopted in the study of plastically deformed materials. The "curl" operation involved in finding the Nye tensor, while conceptually straightforward has been marred with inconsistencies and several different definitions are in use. For the three most common definitions, we show that their consistent application leads to the same result. To eliminate frequently encountered confusion, a summary of expressions for Nye's tensor in terms of elastic and plastic deformation gradient, and for both small and large deformations, is presented. A further question when estimating GND density concerns the optimization technique used to solve the under-determined set of equations linking Nye's tensor and GND density. A systematic comparison of the densities obtained by two widely used techniques, L 1 and L 2 minimisation, shows that both methods yield remarkably similar total GND densities. Thus the mathematically simpler, L 2 , may be preferred over L 1 except when information about the distribution of densities on specific slip systems is required. To illustrate this, we compare experimentally measured lattice distortions beneath nano-indents in pure tungsten, probed using 3D-resolved synchrotron X-ray micro-diffraction, with those predicted by 3D straingradient crystal plasticity finite element calculations. The results are in good agreement and show that the volumetric component of the elastic strain field has a surprisingly small effect on the determined Nye tensor. This is important for experimental techniques, such as micro-beam Laue measurements and HR-EBSD, where only the deviatoric strain component is measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.