Immediately after spinal cord injury (SCI), a devastating paralysis results from the loss of brain stem and cortical innervation of spinal neurons that control movement, including a loss of serotonergic (5-HT) innervation of motoneurons. Over time, motoneurons recover from denervation and function autonomously, exhibiting large persistent calcium currents (Ca PICs) that both help with functional recovery and contribute to uncontrolled muscle spasms. Here we systematically evaluated which 5-HT receptor subtypes influence PICs and spasms after injury. Spasms were quantified by recording the long-lasting reflexes (LLRs) on ventral roots in response to dorsal root stimulation, in the chronic spinal rat, in vitro. Ca PICs were quantified by intracellular recording in synaptically isolated motoneurons. Application of agonists selective to 5-HT(2B) and 5-HT(2C) receptors (including BW723C86) significantly increased the LLRs and associated Ca PICs, whereas application of agonists to 5-HT(1), 5-HT(2A), 5-HT(3), or 5-HT(4/5/6/7) receptors (e.g., 8-OH-DPAT) did not. The 5-HT(2) receptor agonist-induced increases in LLRs were dose dependent, with doses for 50% effects (EC(50)) highly correlated with published doses for agonist receptor binding (K(i)) at 5-HT(2B) and 5-HT(2C) receptors. Application of selective antagonists to 5-HT(2B) (e.g., RS127445) and 5-HT(2C) (SB242084) receptors inhibited the agonist-induced increase in LLR. However, antagonists that are known to specifically be neutral antagonists at 5-HT(2B/C) receptors (e.g., RS127445) had no effect when given by themselves, indicating that these receptors were not activated by residual 5-HT in the spinal cord. In contrast, inverse agonists (such as SB206553) that block constitutive activity at 5-HT(2B) or 5-HT(2C) receptors markedly reduced the LLRs, indicating the presence of constitutive activity in these receptors. 5-HT(2B) or 5-HT(2C) receptors were confirmed to be on motoneurons by immunolabeling. In summary, 5-HT(2B) and 5-HT(2C) receptors on motoneurons become constitutively active after injury and ultimately contribute to recovery of motoneuron function and emergence of spasms.
Leptin decreases food intake and increases energy expenditure. Leptin administration into the CNS of mice or rats increases alveolar ventilation and dysfunction in leptin signaling has been implicated in the hypoventilation that can accompany obesity. An increase in CO2 chemosensitivity has been implicated in this response but it is unclear whether ventilation is augmented when PCO2 is maintained constant. We examined the effects of intravenous leptin to test the hypothesis that systemic leptin administration in isoflurane anesthetized, mechanically ventilated and vagotomized rats would lead to a sustained increase in respiratory motor output that was independent of changes in end-tidal PCO2, body temperature or lung inflation pressure (an indicator of overall lung and chest wall compliance). In anesthetized Sprague-Dawley rats with end-tidal PCO2, lung compliance and rectal temperature maintained constant, injection of a bolus of leptin (0.25 mg, 0.5 mg/ml, i.v.), followed over the next 1 h by the intravenous infusion of an additional 0.25 mg, elicited a progressive increase in the peak amplitude of integrated phrenic nerve discharge lasting at least 1 h beyond the end of the infusion. The increase peaked at 90 min at 58.3 ± 5.7% above baseline. There was an associated increase in the slope of the phrenic response to increasing inspired CO2. There was also a moderate and sustained decrease in arterial pressure 9 ± 1.3 mmHg at 120 min, with no associated change in heart rate. These data indicate that leptin elicits a sustained increase in respiratory motor output that outlasts the administration leptin via a mechanism that does not require alterations in arterial PCO2, body temperature, or systemic afferent feedback via the vagus nerves. This stimulation may help to prevent obesity-related hypoventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.