This work aims to experimentally study the drying of agricultural products using microwaves, with particular reference to grains. Microwave drying experiments were carried out with paddy rice grains in natura (BRSMG Conai variety) for three levels of incident microwave power per mass of fresh grain (6.27, 14.63 and 22.99 W/g). Results of grain drying and heating kinetics are presented and analyzed. It was verified that the ideal average moisture content for grain storage and marketing, 15% (d.b.), occurred at 20 min (6.27 W/g), 13 min (14.63 W/g) and 7 min (22.99 W/g), and that the equilibrium moisture content of the samples reached 4.4%, 2.7% and 1.9%, at 310, 180 and 110 min, for each of the three power levels studied, respectively. The drying with the highest absorbed power caused discoloration of the grains at the end of the drying process.
Convective heating is a traditional method used for the drying of wet porous materials. Currently, microwave drying has been employed for this purpose, due to its excellent characteristics of uniform moisture removal and heating inside the material, higher drying rate, and low energy demand. This paper focuses on the study of the combined convective and microwave drying of porous solids with prolate spheroidal shape. An advanced mathematical modeling based on the diffusion theory (mass and energy conservation equations) written in prolate spheroidal coordinates was derived and the numerical solution using the finite-volume method is presented. Here, we evaluated the effect of the heat and mass transport coefficients and microwave power intensity on the moisture removal and heating of the solid. Results of the drying and heating kinetics and the moisture and temperature distribution inside the solid are presented and discussed. It was verified that the higher the convective heat and mass transfer coefficients and microwave power intensity, the faster the solid will dry and heat up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.