This work compares the welding residual stresses of the cold-wire gas metal arc welding and conventional gas metal arc welding processes. Two techniques were used to measure the residual stresses: X-ray diffraction and acoustic birefringence. The base metal used was carbon manganese steel plates of 9.5-mm thickness. The results showed that the introduction of the cold-wire tends to decrease the residual stresses, suggesting that the introduction of the cold wire decreases the amount of heat given to the base metal, and consequently lowers residual stresses.
This work is distinguished by searching for a non-destructive technology, and X-ray diffraction was validated by the XStress 3000 analyser. Measurements of residual stresses in the welded zone of premium pearlitic rails was performed, rail surface hardness of 370 HB and 0.79% carbon content. The welding of the rails was done by flash butt process, performed by Schlatter GAAS 80 stationary equipment. The results of the tensile and compressive stress measurements identified the residual stresses in the welded zone, with specific zones of tensile stresses misplaced at the weld center, with values up to 391 MPa, and compressive stresses, with values up to -166 MPa, as it moves away rails weld center. An important point of this study is the residual stress measurement considering a complete welding process, including: pre-grinding, flash butt welding, heat treatment, finishing grinding and straightening. Lastly, was observed the welding technique potentially can induce residual stresses at rails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.