Layered molybdenum disulfide (MoS2) is deposited by microwave heating on a reduced graphene oxide (RGO). Three concentrations of MoS2 are loaded on RGO, and the structure and morphology are characterized. The first layers of MoS2 are detected as being directly bonded with the oxygen of the RGO by covalent chemical bonds (Mo‐O‐C). Electrochemical characterizations indicate that this electroactive material can be cycled reversibly between 0.25 and 0.8 V in 1 m HClO4 solution for hybrids with low concentrations of MoS2 layers (LCMoS2/RGO) and between 0.25 and 0.65 V for medium (MCMoS2/RGO) and high concentrations (HCMoS2/RGO) of MoS2 layers on graphene. The specific capacitance measured values at 10 mV s−1 are 128, 265, and 148 Fg−1 for the MoS2/RGO with low, medium, and high concentrations of MoS2, respectively, and the calculated energy density is 63 W h kg−1 for the LCMoS2/RGO hybrid. This supercapacitor electrode also exhibits superior cyclic stability with 92% of the specific capacitance retained after 1000 cycles.
Close-packed arrays of ZrO2 nanocrystals (NCs) have been self-assembled from a colloidal solution in a withdrawal dip coating process. A benzyl alcohol route was used to obtain NCs of narrowly controlled size, and then the capping layer was replaced by oleate using solvothermal treatment. The oleate solubility was explored in chloroform, hexane and toluene to prepare thin films of NCs using a dip coating process. From TEM images, the final structures show that increasing the solvent polarity improved self-assembly to prepare mono- and multi-layer superlattices, during solvent evaporation in a short time. The entangled organic chain in the NC surface offsets the limitations of the faceted NCs, improving the assembly quality, allowing the NC assembly to approach the formation of a hard sphere model, resulting in a FCC close-packed structure. Furthermore, the low interaction of chloroform with the capping layer reduces the shrinkage effect during the solvent evaporation preserving the array in the final self-assembled structure. Molecular dynamics simulations with soft potentials supported the conclusion that hexane interacts with the organic capping ligand, increasing the apparent radius of each NC and stabilizing the colloidal suspension, whereas chloroform is partially removed from the capping layer during the aggregation process, forming an array of nanoparticles.
Correction for 'Nanocrystals self-assembled in superlattices directed by the solvent-organic capping interaction' by Cleocir José Dalmaschio et al., Nanoscale, 2013, 5, 5602-5610.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.