Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience.
The development of functional synapses is a sequential process preserved across many brain areas. Here, we show that glutamatergic postsynaptic currents anticipated GABAergic currents in Layer II/III of the rat neocortex, in contrast to the pattern described for other brain areas. The frequencies of both glutamatergic and GABAergic currents increased abruptly at the beginning of the second postnatal week, supported by a serotonin upsurge. Integrative behaviors arose on postnatal day (P)9, while most motor and sensory behaviors, which are fundamental for pup survival, were already in place at approximately P7. A reduction in serotonin reuptake accelerated the development of functional synapses and integrative huddling behavior, while sparing motor and sensory function development. A decrease in synaptic transmission in Layer II/III induced by a chemogenetic approach only inhibited huddling. Thus, precise developmental sequences mediate early, socially directed behaviors for which neurotransmission and its modulation in supragranular cortical layers play key roles.
Genetically modified mice are used as models for a variety of human behavioral conditions. However, behavioral phenotyping can be a major bottleneck in mouse genetics because many of the classic protocols are too long and/or are vulnerable to unaccountable sources of variance, leading to inconsistent results between centers. We developed a home-cage approach using a Chora feeder that is controlled by-and sends data to-software. In this approach, mice are tested in the standard cages in which they are held for husbandry, which removes confounding variables such as the stress induced by out-of-cage testing. This system increases the throughput of data gathering from individual animals and facilitates data mining by offering new opportunities for multimodal data comparisons. In this protocol, we use a simple work-for-food testing strategy as an example application, but the approach can be adapted for other experiments looking at, e.g., attention, decision-making or memory. The spontaneous behavioral activity of mice in performing the behavioral task can be monitored 24 h a day for several days, providing an integrated assessment of the circadian profiles of different behaviors. We developed a Python-based open-source analytical platform (Phenopy) that is accessible to scientists with no programming background and can be used to design and control such experiments, as well as to collect and share data. This approach is suitable for large-scale studies involving multiple laboratories.
SummaryAn AT motif-dependent axis, modulated by the transcription factor Zfhx3, influences the circadian clock in mice. In particular, gain of function of Zfhx3 significantly shortens circadian rhythms and alters the transcriptional activity of an important class of neuropeptides that controls intercellular signaling in the suprachiasmatic nucleus (SCN) of the hypothalamus. The ZFHX3/AT axis revealed an important, largely cell-nonautonomous control of the circadian clock. Here, by studying the recently identified circadian mouse mutant Zfhx3Sci/+, we identify significant effects on sleep homeostasis, a phenomenon that is outside the canonical circadian clock system and that is modulated by the activity of those neuropeptides at a circuit level. We show that the Zfhx3Sci/+ mutation accelerates the circadian clock at both the hourly scale (i.e., advancing circadian rhythms) and the seconds-to-minutes scale (i.e., anticipating behavioral responses) in mice. The in vivo results are accompanied by a significant presence of sleep targets among protein-protein interactions of the Zfhx3Sci/+-dependent network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.