Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6′SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6′SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6′SL-deficient milk. To test whether lactational 6′SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6′SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6′SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.
Breast milk exerts pivotal regulatory functions early in development whereby it contributes to the maturation of brain and associated cognitive functions. However, the specific components of maternal milk mediating this process have remained elusive. Sialylated human milk oligosaccharides (HMOs) represent likely candidates since they constitute the principal neonatal dietary source of sialic acid, which is crucial for brain development and neuronal patterning. We hypothesize that the selective neonatal lactational deprivation of a specific sialylated HMOs, sialyl(alpha2,3)lactose (3′SL), may impair cognitive capabilities (attention, cognitive flexibility, and memory) in adulthood in a preclinical model. To operationalize this hypothesis, we cross-fostered wild-type (WT) mouse pups to B6.129-St3gal4tm1.1Jxm/J dams, knock-out (KO) for the gene synthesizing 3′SL, thereby providing milk with approximately 80% 3′SL content reduction. We thus exposed lactating WT pups to a selective reduction of 3′SL and investigated multiple cognitive domains (including memory and attention) in adulthood. Furthermore, to account for the underlying electrophysiological correlates, we investigated hippocampal long-term potentiation (LTP). Neonatal access to 3′SL-poor milk resulted in decreased attention, spatial and working memory, and altered LTP compared to the control group. These results support the hypothesis that early-life dietary sialylated HMOs exert a long-lasting role in the development of cognitive functions.
Understanding individual capability to adjust to protracted confinement and isolation may inform adaptive plasticity and disease vulnerability/resilience, and may have long-term implications for operations requiring prolonged presence in distant and restricted environments. Individual coping depends on many different factors encompassing psychological dispositional traits, endocrine reactivity and their underlying molecular mechanisms (e.g. gene expression). A positive view of self and others (secure attachment style) has been proposed to promote individual resilience under extreme environmental conditions. Here, we tested this hypothesis and investigated the underlying molecular mechanisms in 13 healthy volunteers confined and isolated for 12 months in a research station located 1670 km away from the south geographic pole on the Antarctic Plateau at 3233 m above sea level. Study participants, stratified for attachment style, were characterised longitudinally (before, during and after confinement) for their psychological appraisal of the stressful nature of the expedition, diurnal fluctuations in endocrine stress reactivity, and gene expression profiling (transcriptomics). Predictably, a secure attachment style was associated with reduced psychological distress and endocrine vulnerability to stress. In addition, while prolonged confinement and isolation remarkably altered overall patterns of gene expression, such alteration was largely reduced in individuals characterised by a secure attachment style. Furthermore, increased resilience was associated with a reduced expression of genes involved in energy metabolism (mitochondrial function and oxidative phosphorylation). Ultimately, our data indicate that a secure attachment style may favour individual resilience in extreme environments and that such resilience can be mapped onto identifiable molecular substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.