The yellow mealworm, Tenebrio molitor, is currently one of the most important insect species produced for livestock feed and human consumption. High-density rearing conditions make the risk of disease and infections by parasitic symbionts a challenge in the mass production of these insects. However, certain symbionts are beneficial and should be favoured in order to promote healthy insect populations. Knowledge of parasitic symbionts and their management is essential for the insect rearing industry and its associated research. Here we review the documented microbial infectious agents, invertebrate parasites, and beneficial symbionts occurring in T. molitor. Furthermore, we discuss detection, prevention, and treatment methods for disease management in T. molitor production systems to inform future management and decision making in T. molitor rearing.
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.