We report the crystal structure, at 2.5 A resolution, of a truncated human EGFR ectodomain bound to TGFalpha. TGFalpha interacts with both L1 and L2 domains of EGFR, making many main chain contacts with L1 and interacting with L2 via key conserved residues. The results indicate how EGFR family members can bind a family of highly variable ligands. In the 2:2 TGFalpha:sEGFR501 complex, each ligand interacts with only one receptor molecule. There are two types of dimers in the asymmetric unit: a head-to-head dimer involving contacts between the L1 and L2 domains and a back-to-back dimer dominated by interactions between the CR1 domains of each receptor. Based on sequence conservation, buried surface area, and mutagenesis experiments, the back-to-back dimer is favored to be biologically relevant.
Vascular endothelial growth factor receptor‐3 (VEGFR‐3/Flt4) binds two known members of the VEGF ligand family, VEGF‐C and VEGF‐D, and has a critical function in the remodelling of the primary capillary vasculature of midgestation embryos. Later during development, VEGFR‐3 regulates the growth and maintenance of the lymphatic vessels. In the present study, we have isolated and cultured stable lineages of blood vascular and lymphatic endothelial cells from human primary microvascular endothelium by using antibodies against the extracellular domain of VEGFR‐3. We show that VEGFR‐3 stimulation alone protects the lymphatic endothelial cells from serum deprivation‐induced apoptosis and induces their growth and migration. At least some of these signals are transduced via a protein kinase C‐dependent activation of the p42/p44 MAPK signalling cascade and via a wortmannin‐sensitive induction of Akt phosphorylation. These results define the critical role of VEGF‐C/VEGFR‐3 signalling in the growth and survival of lymphatic endothelial cells. The culture of isolated lymphatic endothelial cells should now allow further studies of the molecular properties of these cells.
ErbB2 does not bind ligand, yet appears to be the major signaling partner for other ErbB receptors by forming heteromeric complexes with ErbB1, ErbB3, or ErbB4. The crystal structure of residues 1-509 of ErbB2 at 2.5 A resolution reveals an activated conformation similar to that of the EGFR when complexed with ligand and very different from that seen in the unactivated forms of ErbB3 or EGFR. The structure explains the inability of ErbB2 to bind known ligands and suggests why ErbB2 fails to form homodimers. Together, the data suggest a model in which ErbB2 is already in the activated conformation and ready to interact with other ligand-activated ErbB receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.