This work consists in seismic interpretation of poststack data of the area abridged by southern Recôncavo and northern Camamu basins, aided by the interpretation of well logs; including mapping of structural features (i.e., basement top and main fault systems) and the key stratigraphic surfaces (i.e., synrift and post-rift unconformities, as well as internal unconformities of the rift supersequence), resulting in a high-resolution stratigraphic correlation between the basins.
This work aims to delimit the Direct Hydrocarbon Indicators (DHI) zones using the Gaussian Mixture Models (GMM) algorithm, an unsupervised machine learning method, over the FS8 seismic horizon in the seismic data of the Dutch F3 Field. The dataset used to perform the cluster analysis was extracted from the 3D seismic dataset. It comprises the following seismic attributes: Sweetness, Spectral Decomposition, Acoustic Impedance, Coherence, and Instantaneous Amplitude. The Principal Component Analysis (PCA) algorithm was applied in the original dataset for dimensionality reduction and noise filtering, and we choose the first three principal components to be the input of the clustering algorithm. The cluster analysis using the Gaussian Mixture Models was performed by varying the number of groups from 2 to 20. The Elbow Method suggested a smaller number of groups than needed to isolate the DHI zones. Therefore, we observed that four is the optimal number of clusters to highlight this seismic feature. Furthermore, it was possible to interpret other clusters related to the lithology through geophysical well log data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.