In general, several conservative techniques are available for detecting cracks in concrete bridges but they have significant limitations, including low accuracy and efficiency. Due to the expansion of the neural network method, the performance of digital image processing based crack identification has recently diminished. Many single classifier approaches are used to detect the cracks with high accuracy. The classifiers are not concentrating on random fluctuation in the training dataset and also it reflects in the final output as an over-fitting phenomenon. Though this model contains many parameters to justify the training data, it fails in the residual variation. These residual variations are frequent in UAV recorded photos as well as many camera images. To reduce this challenge, a noise reduction technique is utilized along with an SVM classifier to reduce classification error. The proposed technique is more resourceful by performing classification via SVM approach, and further the feature extraction and network training has been implemented by using the CNN method. The captured digital images are processed by incorporating the bending test through reinforced concrete beams. Moreover, the proposed method is determining the widths of the crack by employing binary conversion in the captured images. The proposed model outperforms conservative techniques, single type classifiers, and image segmentation type process methods in terms of accuracy. The obtained results have proved that, the proposed hybrid method is more accurate and suitable for crack detection in concrete bridges especially in the unmanned environment.
Recently, fake fingerprint detection is a challenging task in the cyber-crime sector in any developed country. Biometric authentication is growing in many sectors such as internet banking, secret file locker, etc. There spoof fingerprint detection is an essential element that is used to detect spot-on fingerprint analysis. This article focuses on the implementation and evaluation of suitable machine learning algorithms to detect fingerprint liveness. It also includes the comparative study between Ridge-let Transform (RT) and the Machine Learning (ML) approach. This article emphasis on research and analysis of the detection of the liveness spoof fingerprint and identifies the problems in different techniques and solutions. The support vector machine (SVM) classifiers work with indiscriminate loads and confined grayscale array values. This leads to a liveness report of fingerprints for detection purposes. The SVM methodology classifies the fingerprint images among more than 50K of real and spoof fingerprint image collections based on this logic. Our proposed method achieves an overall high accuracy of detection of liveness fingerprint analysis. The ensemble classifier approach model is proving an overall efficiency rate of 90.34 % accurately classifies samples than the image recognition method with RT. This recommended method demonstrates the decrement of 2.5% error rate when compared with existing methods. The augmentation of the dataset is used to improve the accuracy to detect. Besides, it gives fake fingerprint recognition and makes available future direction.
Recently, the image reconstruction study on EIT plays a vital role in the medical application field for validation and calibration purpose. This research article analyzes the different types of reconstruction algorithms of EIT in medical imaging applications. Besides, it reviews many methods involved in constructing the electrical impedance tomography. The spatial distribution and resolution with different sensitivity has been discussed here. The electrode arrangement of various methods involved in the EIT system is discussed here. This research article comprises of adjacent drive method, cross method, and alternative opposite current direction method based on the voltage driven pattern. The assessment process of biomedical EIT has been discussed and investigated through the impedance imaging of the existent substances. The locality of the electrodes can be calculated and fixed for appropriate methods. More specifically, this research article discusses about the EIT image reconstruction methods and the significance of the alternative opposite current direction approach in the biomedical system. The change in conductivity test is further investigated based on the injection of current flow in the system. It has been established by the use of Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EDITORS) software, which is open-source software.
Image thinning is the most essential pre-processing technique that plays major role in image processing applications such as image analysis and pattern recognition. It is a process that reduces a thick binary image into thin skeleton. In the present paper we have used hybrid parallel thinning algorithm to obtain the skeleton of the binary image. The result skeleton contains one pixel width which preserves the topological properties and retains the connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.