Motion control is widely used in industrial applications since machinery, robots, conveyor bands use smooth movements in order to reach a desired position decreasing the steady error and energy consumption. In this paper, a new Proportional-Integral-Derivative (PID) -type fuzzy logic controller (FLC) tuning strategy that is based on direct fuzzy relations is proposed in order to compute the PID constants. The motion control algorithm is composed by PID-type FLC and S-curve velocity profile, which is developed in C/C++ programming language; therefore, a license is not required to reproduce the code among embedded systems. The self-tuning controller is carried out online, it depends on error and change in error to adapt according to the system variations. The experimental results were obtained in a linear platform integrated by a direct current (DC) motor connected to an encoder to measure the position. The shaft of the motor is connected to an endless screw; a cart is placed on the screw to control its position. The rise time, overshoot, and settling time values measured in the experimentation are 0.124 s, 8.985% and 0.248 s, respectively. These results presented in part 6 demonstrate the performance of the controller, since the rise time and settling time are improved according to the state of the art. Besides, these parameters are compared with different control architectures reported in the literature. This comparison is made after applying a step input signal to the DC motor.
This article presents a methodology to improve the performance of learning of students in the major of Automation Engineering, through the development of a multidisciplinary project that involves the use of contemporary technological tools and knowledge of previous subjects. It is sought to add in their educational training, theory and practice for the student, learning, new knowledge, and skills within their training as an engineer. Despite advances in teaching methods and the inclusion of contemporary tools in the learning process, the success rate is low. A qualitative and quantitative analysis of student learning is made by integrating a multidisciplinary project based on contemporary tools compared with other reviewed works. This laboratory based on a fieldprogrammable gate array helps the student to acquire skills related to the implementation of reconfigurable logic and instrumentation applied to control theory. The development of the final project involves the design of a graphic user interface, hardware description, communication protocols, and implementation of motion control, it is looking for is that the student can relate theory to practice in order to motivate and increase skills and knowledge, as well as solving both didactic and industrial problems. The results obtained show that the students are satisfied with the course and that the experience with the integration of this type of multidisciplinary projects directly impacts the motivation and learning of the student, considerably increased developed based on the specific indicators that the Querétaro State University has accredited by Accreditation Board for Engineering and Technology since 2016.
Servo systems are feedback control systems characterized by position, speed, and/or acceleration outputs. Nowadays, industrial advances make the electronic stages in these systems obsolete compared to the mechanical elements, which generates a recurring problem in technological, commercial and industrial applications. This article presents a methodology for the development of an open-architecture controller that is based on reconfigurable hardware under the open source concept for servo applications. The most outstanding contribution of this paper is the implementation of a Genetic Algorithm for online self tuning with a focus on both high-quality servo control and reduction of vibrations during the positioning of a linear motion system. The proposed techniques have been validated on a real platform and form a novel, effective approach as compared to the conventional tuning methods that employ empirical or analytical solutions and cannot improve their parameter set. The controller was elaborated from the Graphical User Interface to the logical implementation while using free tools. This approach also allows for modification and updates to be made easily, thereby reducing the susceptibility to obsolescence. A comparison of the logical implementation with the manufacturer software was also conducted in order to test the performance of free tools in FPGAs. The Graphical User Interface developed in Python presents features, such as speed profiling, controller auto-tuning, measurement of main parameters, and monitoring of servo system vibrations.
The velocity profiles are used in the design of trajectories in motion control systems. It is necessary to design smoother movements to avoid high stress in the motor. In this paper, the rate of change in acceleration value is used to develop an S-curve velocity profile which presents an acceleration and deceleration stage smoother than the trapezoidal velocity profile reducing the error at the end of the duty-cycle pre-established in one degree of freedom (DoF) application. Furthermore, a new methodology is developed to generate a seven-segment profile that works with negative velocity and displacement constraints applying an open source architecture in a hybrid electronic platform compounded by a system on a chip (SoC) Raspberry Pi 3 and a field programmable gate array (FPGA). The performance of the motion controller is measured through the comparison of the error obtained in real-time application with a trapezoidal velocity profile. As a result, a low-cost platform and an open architecture system are achieved.
Performing control is necessary for processes where a variable needs to be regulated. Even though conventional techniques are widely preferred for their implementation, they present limitations in systems in which the parameters vary over time, which is why methods that use artificial intelligence algorithms have been developed to improve the results given by the controller. This work focuses on implementing a position controller based on fuzzy logic in a real platform that consists of the base of a 3D printer, the direct current motor that modifies the position in this base, the power stage and the acquisition card. The contribution of this work is the use of genetic algorithms to optimize the values of the membership functions in the fuzzification of the input variables to the controller. Four scenarios were analyzed, in which the trajectory and the weight of the system were modified. The results obtained in the experimentation show that the rising and setting times of the proposed controller are better than those obtained by similar techniques that were previously developed in the literature. It was also verified that the proposed technique reached the desired values even when the initial conditions in the system changed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.