The active screen plasma system has been extensively studied over the past few years, mainly for plasma nitriding purposes. This technique also provides possibilities of treating non-electrical conducting materials, such as polymeric ones, which is unattainable with a conventional DC plasma system. In this work, an active screen plasma setup for maleic anhydride (MA) film deposition on a glass substrate was used. The plasma working gas was a mixture of argon and MA vapour. Films obtained through conventional plasma discharge were compared with the active screen deposition process, in both DC and pulsed-mode plasma. The samples were characterized through Fourier-transform infrared spectroscopy and static contact angle between the film's surface and droplets of distilled water. Film thickness measurements were performed through profilometry. Results showed that MA films obtained through the active screen system are thicker and more efficiently preserve the anhydride groups than those obtained from conventional plasma discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.