Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.
A polarized macrophage response into inflammatory (M1) or regenerative/anti-inflammatory (M2) phenotypes is critical in host response to multiple intracellular bacterial infections. Ehrlichia is an obligate Gram-negative intracellular bacterium that causes human monocytic ehrlichiosis (HME): a febrile illness that may progress to fatal sepsis with multi-organ failure. We have shown that liver injury and Ehrlichia-induced sepsis occur due to dysregulated inflammation. Here, we investigated the contribution of macrophages to Ehrlichia-induced sepsis using murine models of mild and fatal ehrlichiosis. Lethally-infected mice showed accumulation of M1 macrophages (iNOS-positive) in the liver. In contrast, non-lethally infected mice showed polarization of M2 macrophages and their accumulation in peritoneum, but not in the liver. Predominance of M1 macrophages in lethally-infected mice was associated with expansion of IL-17-producing T, NK, and NKT cells. Consistent with the in vivo data, infection of bone marrow-derived macrophages (BMM) with lethal Ehrlichia polarized M0 macrophages into M1 phenotype under an mTORC1-dependent manner, while infection with non-lethal Ehrlichia polarized these cells into M2 types. This work highlights that mTORC1-mediated polarization of macrophages towards M1 phenotype may contribute to induction of pathogenic immune responses during fatal ehrlichiosis. Targeting mTORC1 pathway may provide a novel aproach for treatment of HME.
Zika virus (ZIKV) is an emerging virus involved in recent outbreaks in Brazil. The association between the virus and Guillain-Barré syndrome (GBS) or congenital disorders has raised a worldwide concern. In this work, we investigated a rare Zika case, which was associated with GBS and spontaneous retained abortion. Using specific anti-ZIKV staining, the virus was identified in placenta (mainly in Hofbauer cells) and in several fetal tissues, such as brain, lungs, kidneys, skin and liver. Histological analyses of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema and necrosis in placenta, as well as tissue disorganization in the fetus. Increased cellularity (Hofbauer cells and TCD8+ lymphocytes), expression of local pro-inflammatory cytokines such as IFN-γ and TNF-α, and other markers, such as RANTES/CCL5 and VEGFR2, supported placental inflammation and dysfunction. The commitment of the maternal-fetal link in association with fetal damage gave rise to a discussion regarding the influence of the maternal immunity toward the fetal development. Findings presented in this work may help understanding the ZIKV immunopathogenesis under the rare contexts of spontaneous abortions in association with GBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.