Surface energy fluxes, at averaging times from 10 min to 1 h, are needed as inputs to most state-of-the-art dispersion models. The sensible heat flux is a major priority, because it is combined with the momentum flux to estimate the stability, the wind profile, and the turbulence intensities. Because of recent concerns about dispersion in built-up downtown areas of large cities, there is a need to estimate sensible heat flux in the midst of tall buildings. In this paper, the authors work with some high-quality and relevant but arguably underutilized data. The results of analysis of urban heat flux components from 10 locations in suburban and built-up downtown areas in Oklahoma City, Oklahoma, during the Joint Urban 2003 (JU2003) field experiment are presented here. At street level in the downtown area, in the midst of tall skyscrapers, the ground heat flux and the sensible heat flux are relatively large and the latent heat flux is relatively small when compared with concurrent fluxes observed in the upwind suburban areas. In confirmation of measurements in other cities, the sensible heat flux in the downtown area is observed to be slightly positive (10-20 W m 22 ) at night, indicating nearly neutral or slightly unstable conditions. Also in agreement with observations in other cities is that the ground heat flux in the downtown area has a magnitude that is 3 or 4 times that in suburban or rural areas. These results should permit improved parameterizations of sensible heat fluxes in the urban downtown area with tall buildings.
Abstract:The sky view factor (SVF) is an important radiometric parameter for assessing the canopy energy budget of urban areas. There are several methods to determine the SVF observationally. The most common is taking a photo with a digital camera equipped with a fish-eye lens and then converting ratio of sky area to canopy area into SVF. However, most urban canopy models use this variable as derived from idealized canopy geometry. To evaluate the effect of inputting observed SVFs in numerical models, we evaluated a mesoscale model's performance in reproducing surface wind and surface temperature when subjected to different ways of SVF prescription. The studied area was the Metropolitan Area of São Paulo (MASP) in Brazil. Observed SVFs were obtained for 37 sites scattered all over the MASP. Three simulations, A, B, and C, with different SVF and aspect-ratio prescriptions, were performed to analyze the effect of SVF on the urban canopy parameterization: Simulation A (standard) used the original formulation of the Town Energy Budget (TEB) model, computing the SVFs from the aspect-ratios; Simulation B used the observed SVFs, but keeps aspect-ratios as original; and Simulation C used the aspect-ratios computed from observed SVFs. The results show that in general inputting observed SVFs improves the model capability of reproducing temperature at surface level. The comparison of model outputs with data of regular meteorological stations shows that the inclusion of observed values of SVFs enhances model performance, reducing the RMSE index by up to 3 • C. In this case, the model is able to better reproduce the expected effects in the wind field, and consequently the temperature advection, of the urban boundary layer to a large urban area. The result of Simulation C shows that the surface wind and temperature intensity for all urban types is higher than those of Simulation A, because of the lower values of the aspect ratio. The urban type with high density of tall buildings increase up to 1 m s −1 in the wind speed, and approximately 1 • C in temperature, showing the importance of a better representation of the urban structure and the SVF database improvement.
High-frequency measurements of wind, and temperature were made during the dry season of 2008 to study the development of an internal boundary layer at the main Brazilian space launching centre, Centro de Lançamento de Alcântara at Alcântara, Maranhão, Brazil. Turbulence measurements taken at the coast, in two different points 227 m apart show different daily cycles of turbulent kinetic energy friction velocity (u *), and buoyancy flux w' T ν '. Surface roughness change, surface heating change, and a gap in the natural vegetation seem to be the causes for the variation in these turbulent parameters. The mean wind cycle also shows distinct patterns. It seems that, first, internal boundary layers develop when the oceanic surface layer reaches the continent, and a second when the first internal boundary layer's flow encounters the gap. A direct implication is that turbulence is not horizontally homogeneous and measurements taken at single places are not spatially representative. Knowing how turbulence varies spatially is necessary information to understand the diffusion of pollutants exhausted by rockets near the coast.
In the context of the impact of urbanization on climate change, this work aims to evaluate the sensitivity of the thermal and radiative properties of building surfaces in urban areas to the urban heat island intensity, a local scale meteorological phenomenon. For this, variations of albedo values, emissivity, thermal conductivity and heat capacity of roofs, streets and walls were simulated through an urban scheme coupled with the BRAMS mesoscale atmospheric model for the metropolitan area of São Paulo, considering two main urban types. The simulations show that, in general, looking for cold surface situations, the change of building material can contribute to a reduction of up to 3 °C for São Paulo. In addition, the role of orientation and the typological characteristics of constructions should be taken into account. In this sense, it is expected that this work guides civil engineers and builders to search for new materials in order to reduce the effects of urbanization on the local climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.