Archaeologists often argue whether Paleolithic works of art, cave paintings in particular, constitute reflections of the natural environment of humans at the time. They also debate the extent to which these paintings actually contain creative artistic expression, reflect the phenotypic variation of the surrounding environment, or focus on rare phenotypes. The famous paintings “The Dappled Horses of Pech-Merle,” depicting spotted horses on the walls of a cave in Pech-Merle, France, date back ∼25,000 y, but the coat pattern portrayed in these paintings is remarkably similar to a pattern known as “leopard” in modern horses. We have genotyped nine coat-color loci in 31 predomestic horses from Siberia, Eastern and Western Europe, and the Iberian Peninsula. Eighteen horses had bay coat color, seven were black, and six shared an allele associated with the leopard complex spotting ( LP ), representing the only spotted phenotype that has been discovered in wild, predomestic horses thus far. LP was detected in four Pleistocene and two Copper Age samples from Western and Eastern Europe, respectively. In contrast, this phenotype was absent from predomestic Siberian horses. Thus, all horse color phenotypes that seem to be distinguishable in cave paintings have now been found to exist in prehistoric horse populations, suggesting that cave paintings of this species represent remarkably realistic depictions of the animals shown. This finding lends support to hypotheses arguing that cave paintings might have contained less of a symbolic or transcendental connotation than often assumed.
Horses have been valued for their diversity of coat colour since prehistoric times; this is especially the case since their domestication in the Caspian steppe in ~3,500 BC. Although we can assume that human preferences were not constant, we have only anecdotal information about how domestic horses were influenced by humans. Our results from genotype analyses show a significant increase in spotted coats in early domestic horses (Copper Age to Iron Age). In contrast, medieval horses carried significantly fewer alleles for these phenotypes, whereas solid phenotypes (i.e., chestnut) became dominant. This shift may have been supported because of (i) pleiotropic disadvantages, (ii) a reduced need to separate domestic horses from their wild counterparts, (iii) a lower religious prestige, or (iv) novel developments in weaponry. These scenarios may have acted alone or in combination. However, the dominance of chestnut is a remarkable feature of the medieval horse population.
Ersmark, E et al 2015 Population Demography and Genetic Diversity in the Pleistocene Cave Lion. Open Quaternary, 1: 4, pp. 1-15, DOI: http://dx.doi. org/10.5334/oq.aa With a range that covered most of northern Eurasia and parts of North America, the cave lion (Panthera spelaea) was one of the most widespread carnivores of the Late Pleistocene. Earlier ancient DNA analyses have shown that it is distinct from modern lions, and have suggested a demographic decline in Beringia during marine isotope stage 3 (MIS 3). Here, we further investigate the Late Pleistocene population dynamics in more detail by combining a powerful algorithm that couples MCMC with coalescent simulations under an approximate Bayesian computation framework. We use an ancient DNA dataset of previously published (n = 34) and new radiocarbon dated specimens (n = 14). Phylogenetic and network analyses based on the mitochondrial control region and the ATP8 gene identified two major haplogroups, one of which appears to vanish around 41,000 cal a BP. The approximate Bayesian computation analysis suggested a decline in effective population size (Ne) in Beringia of at least a 2-fold magnitude that began approximately 47,000 cal a BP, followed by an increase in Ne, most likely around 18,000 cal a BP. The cave lion went through a demographic bottleneck during MIS 3, which may have lasted for several tens of thousands of years, and only recovered shortly before the species' extinction. Several other large mammal species display similar declines in genetic diversity in Beringia during MIS 3, suggesting that major environmental changes might have affected megafaunal populations during this time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.