We systematically reviewed observational and clinical trials (baseline) studies examining differences in gait parameters between Parkinson’s disease (PD) in on-medication state and healthy control. Four electronic databases were searched (November-2018 and updated in October-2020). Independent researchers identified studies that evaluated gait parameters measured quantitatively during self-selected walking speed. Risk of bias was assessed using an instrument proposed by Downs and Black (1998). Pooled effects were reported as standardized mean differences and 95% confidence intervals using a random-effects model. A total of 72 studies involving 3027 participants (1510 with PD and 1517 health control) met the inclusion criteria. The self-selected walking speed, stride length, swing time and hip excursion were reduced in people with PD compared with healthy control. Additionally, PD subjects presented higher cadence and double support time. Although with a smaller difference for treadmill, walking speed is reduced both on treadmill (.13 m s−1) and on overground (.17 m s−1) in PD. The self-select walking speed, stride length, cadence, double support, swing time and sagittal hip angle were altered in people with PD compared with healthy control. The precise determination of these modifications will be beneficial in determining which intervention elements are most critical in bringing about positive, clinically meaningful changes in individuals with PD (PROSPERO protocol CRD42018113042).
Background: Elastic bouncing is a physio-mechanical model that can elucidate running behavior in different situations, including landing and takeoff patterns and the characteristics of the muscle-tendon units during stretch and recoil in running. An increase in running speed improves the body’s elastic mechanisms. Although some measures of elastic bouncing are usually carried out, a general description of the elastic mechanism has not been explored in running performance. This study aimed to compare elastic bouncing parameters between the higher- and lower-performing athletes in a 3000 m test. Methods: Thirty-eight endurance runners (men) were divided into two groups based on 3000 m performance: the high-performance group (P high ; n = 19; age: 29 ± 5 years; mass: 72.9 ± 10 kg; stature: 177 ± 8 cm; 3000 time : 656 ± 32 s) and the low-performance group (P low ; n = 19; age: 32 ± 6 years; mass: 73.9 ± 7 kg; stature: 175 ± 5 cm; 3000 time : 751 ± 29 s). They performed three tests on different days: (i) 3000 m on a track; (ii) incremental running test; and (iii) a running biomechanical test on a treadmill at 13 different speeds from 8 to 20 km h −1 . Performance was evaluated using the race time of the 3000 m test. The biomechanics variables included effective contact time ( t ce ), aerial time ( t ae ), positive work time ( t push ), negative work time ( t break ), step frequency ( f step ), and elastic system frequency ( f sist ), vertical displacement ( S v ) in t ce and t ae ( S ce and S ae ), vertical force, and vertical stiffness were evaluated in a biomechanical submaximal test on treadmill. Results: The t ae , f sist , vertical force and stiffness were higher ( p < 0.05) and t ce and f step were lower ( p < 0.05) in P high , with no differences between groups in t push and t break . Conclusion: The elastic bouncing was optimized in runners of the best performance level, demonstrating a better use of elastic components.
Background: Nordic walking is an attractive method of endurance training. Nevertheless, the biomechanic response due to the additional contribution of using poles in relation to free walking training has been less explored in the elderly. Purpose: This randomized parallel controlled trial aimed to assess the effects of 8 weeks of Nordic walking and free walking training on the walking economy, mechanical work, metabolically optimal speed, and electromyographic activation in elderly. Methods: Thirty-three sedentary elderly were randomized into Nordic walking (n = 16) and free walking group (n = 17) with equalized loads. Submaximal walking tests were performed from 1 to 5 km h −1 on the treadmill.Results: Walking economy was improved in both free and Nordic walking groups (x 2 4.91, p = 0.014) and the metabolically optimal speed was increased by approximately 0.5 km h −1 changing the speed-cost profile. The electromyographic activation in lower and upper limbs, pendular recovery, and total, external, and internal mechanical work remained unchanged (p > 0.05). Interestingly, the internal mechanical work associated with arm movement was higher in the Nordic walking group than in the free walking group after training, while the co-contraction from upper limb muscles was reduced similarly to both groups.Conclusions: Eight weeks of Nordic walking training effectively improved the walking economy and functionality as well as maintained the gait mechanics, similar to free walking training in elderly people. This enhancement in the metabolic economy may have been mediated by a reduction in the co-contraction from upper limb muscles. Trial registration: ClinicalTrails.gov NCT03096964
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.