Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO 3 , K 2 HPO 4 , MgSO 4 , CaCl 2 , Na 2 CO 3 , and EDTA) and the concentration of trace metals in BG-11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m –2 s –1 for 15 days, and the effect of nutrients was evaluated using a Plackett–Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett–Burman Design revealed that only NaNO 3 , Na 2 CO 3 , and K 2 HPO 4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (3 4 ) using NaNO 3 , Na 2 CO 3 , K 2 HPO 4 , and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO 4 , CaCl 2 , and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na 2 CO 3 and K 2 HPO 4 highly increased PBPs’ concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients’ concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.
Microalgae have received increasing attentions as an alternative treatment approach to remediate wastewater for both nutrient removal and biomass production. Wastewater from aquaculture industry contains high levels of nitrogen and phosphorus, which affect plant growth. Conventional methods for treating aquaculture wastewater generally are inefficient and unprofitable. In this work, microalgae Chlorella vulgaris growth was studied in aquaculture effluent medium 1702 Estefany Blanco-Carvajal et al. in order to reduce its contents of NO3 and PO4. Furthermore, the effect of NaHCO3 and Na2CO3 concentrations and addition time on biomass productivity was evaluate to determine the most suitable conditions for biomass growth. It was found that highest biomass content (0.
Microalgae have emerged as environment friendly alternative source of valuable products for energy, pharmaceutical and cosmetic industries. These microorganisms have been also studied in wastewater treatments due to its ability to remove CO2, nitrogen, phosphorus, and toxic metals. In this work, cultivation of microalgae Chlorella vulgaris was carried out in aquaculture wastewater in order to reduce its contents of NO3 and PO4. In addition, different concentration of inorganic 94 Estefany Blanco-Carvajal et al. carbon sources (NaHCO3 and Na2CO3) and addition times were considered for determining suitable conditions in microalgae culture to produce proteins. It was found that highest protein content (45 % w/w) was achieved at 3.4 g/L of NaHCO3 and 19 h of addition time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.