Abstract-In this correspondence, we study the achievable rate region of the multiple-input single-output (MISO) interference channel, under the assumption that all receivers treat the interference as additive Gaussian noise. Our main result is an explicit parametrization of the Pareto boundary for an arbitrary number of users and antennas. The parametrization describes the boundary in terms of a low-dimensional manifold. For the two-user case we show that a single real-valued parameter per user is sufficient to achieve all points on the Pareto boundary and that any point on the Pareto boundary corresponds to beamforming vectors that are linear combinations of the zero-forcing (ZF) and maximum-ratio transmission (MRT) beamformers. We further specialize the results to the MISO broadcast channel (BC). A numerical example illustrates the result.
The dramatic increase of network infrastructure comes at the cost of rapidly increasing energy consumption, which makes optimization of energy efficiency (EE) an important topic. Since EE is often modeled as the ratio of rate to power, we present a mathematical framework called fractional programming that provides insight into this class of optimization problems, as well as algorithms for computing the solution. The main idea is that the objective function is transformed to a weighted sum of rate and power. A generic problem formulation for systems dissipating transmit-independent circuit power in addition to transmit-dependent power is presented. We show that a broad class of EE maximization problems can be solved efficiently, provided the rate is a concave function of the transmit power.We elaborate examples of various system models including time-varying parallel channels. Rate functions with an arbitrary discrete modulation scheme are also treated. The examples considered lead to water-filling solutions, but these are different from the dual problems of power minimization under rate constraints and rate maximization under power constraints, respectively, because the constraints need not be active. We also demonstrate that if the solution to a rate maximization problem is known, it can be utilized to reduce the EE problem into a one-dimensional convex problem.
Abstract-We consider the problem of coordinating two competing multiple-antenna wireless systems (operators) that operate in the same spectral band. We formulate a rate region which is achievable by scalar coding followed by power allocation and beamforming. We show that all interesting points on the Pareto boundary correspond to transmit strategies where both systems use the maximum available power. We then argue that there is a fundamental need for base station cooperation when performing spectrum sharing with multiple transmit antennas. More precisely, we show that if the systems do not cooperate, there is a unique Nash equilibrium which is inefficient in the sense that the achievable rate is bounded by a constant, regardless of the available transmit power. An extension of this result to the case where the receivers use successive interference cancellation (SIC) is also provided.Next we model the problem of agreeing on beamforming vectors as a non-transferable utility (NTU) cooperative gametheoretic problem, with the two operators as players. Specifically we compute numerically the Nash bargaining solution, which is a likely resolution of the resource conflict assuming that the players are rational. Numerical experiments indicate that selfish but cooperating operators may achieve a performance which is close to the maximum-sum-rate bound.
Abstract-This work develops power control algorithms for energy efficiency (EE) maximization (measured in bit/Joule) in wireless networks. Unlike previous related works, minimum-rate constraints are imposed and the signal-to-interference-plus-noise ratio takes a more general expression, which allows one to encompass some of the most promising 5G candidate technologies. Both network-centric and user-centric EE maximizations are considered. In the network-centric scenario, the maximization of the global EE and the minimum EE of the network are performed. Unlike previous contributions, we develop centralized algorithms that are guaranteed to converge, with affordable computational complexity, to a Karush-Kuhn-Tucker point of the considered non-convex optimization problems. Moreover, closed-form feasibility conditions are derived. In the user-centric scenario, game theory is used to study the equilibria of the network and to derive convergent power control algorithms, which can be implemented in a fully decentralized fashion. Both scenarios above are studied under the assumption that single or multiple resource blocks are employed for data transmission. Numerical results assess the performance of the proposed solutions, analyzing the impact of minimum-rate constraints, and comparing the network-centric and user-centric approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.